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VALENCE & ELECTRONIC SPECTROSCOPY NOTES 

 
Born-Oppenheimer Approximation 

For a molecular system, Hamiltonian: 

 
H2

+ - 
Define He = H – TN  [ Electronic Hamiltonian ] 

For stationary nuclei, suppose we’ve solved the electronic problem: 

 
B-O Approx: 

 
Assume ψ(r|R) is a slowly varying function of nuclear positions. 
 
When not applicable – 

a) 2 states have same energy. 
b) “curve crossing” – fast nuclear motion, e.g. in ionic system. 

 
Molecular Orbitals & the LCAO Approach 

 
MO Theory starts by supposing that the main ideas of the self-consistent-field method for atoms 
may be applied equally well to molecules, based on the following fundamental principle – each 
electron in a molecule is described by a certain wavefunction ψ, where the electron is spread 
over the whole molecule as opposed to being centred on any particular atom(s). Otherwise it can 
be treated like an atomic orbital in terms of electron-density, quantum numbers, etc. 
 
The most obvious characteristic for an MO of a diatomic molecule is that it is bicentric. It is this 
which distinguishes it from an AO. The most appropriate physical description is that the electron 
moves in an orbital which encloses the neighbourhood of both nuclei. 
 
When the electron is in the region of one of the nuclei, the forces on it are those due chiefly to 
that nucleus and to the other electrons near that nucleus. Disregarding the electron interactions, 
the wavefunction will be similar to that for H2

+. We notice that when the electron is near nucleus 
A, the most significant parts of the Hamiltonian are precisely those terms which would comprise 
the Hamiltonian of an electron in the field of A alone. This means that in the neighbourhood of 
nucleus A, the MO resembles an AO φA. Since the complete MO has characteristics separately 
possessed by φA and φB, it is a natural step to adopt the method of a linear combination: 
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Solving the Electronic Problem for H2

+ 
 

Symmetry constraints on e-density, ρ(r): 

 
Equal at all points related by symmetry, therefore cA = ± cB ≡ c. 
 
Normalisation: 

 
Therefore 2 possible wavefunctions: 

 
With densities: 

 

2

22
BA φφ +

= sum of atomic densities. 

φAφB is large where orbitals overlap. 
 
ψo – extra density between nuclei (reduces elsewhere by (1+SAB) 
 
ψ1 – reduces density between nuclei and increases it elsewhere. 
 
Evaluation of energy, 

 
HAA = HBB; HAB = HBA (identical 1s orbitals). 

 
Resulting Energy expressions have (J+K) = bonding, (J-K) = antibonding. 
The integrals – 

 
NOTES: 

1
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Exponential. 
J(R) cancels 1/R. 
k(R) dominant and antibonding orbitals more antibonding than bonding is bonding. 
 
LCAO – solves H2

+ exactly, but really only a guide – non-quantitative. 
 
Some Terminology 

 
Down symmetry axis: 

 
g,u  parity (behaviour under inversion). g = even, u = odd. 

 
 

Orbital Approximation 
For Many Electron Molecules 

 

 
- total wavefunction associated with a “configuration”. 
- Construct according to exclusion principle. 

 
Orbitals – 
1 electron wavefunction used in construction of many electron wavefunction. 
 
Nature of Orbital Approximation – 
H2 ground state: 

 
Labelling – 

 
 
Doubly occupied orbital  totally symmetric representation. 
 
For O2, Π x Π from electronic configuration: 

 
Predictions of Orbital Approximation – 
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Molecule Configuration Term Symbol # Bonding e’s R 

H2
+ 1σg

1 2Σg
+ 1 1.06 

H2 1σg
2 1Σg

+ 2 0.74 
He2

+ 1σg
21σu

1 2Σu
+ 1 1.08 

He2 1σg
11σu

2 1Σg
+ 0 - 

 Qualitative correspondence with observation. 
 
Does it satisfy Hψ = Eψ: 
No dependence on spin in H  

 
Therefore ψ must depend explicitly on r12, i.e. wavefunction must be correlated (e1 knows where 
e2 is). 
 
IMPROVEMENTS: 

- allow orbitals to vary so as to minimise average inter-electron repulsion (by Variation 
Principle). 

- Self-consistent field or Hartree-Fock orbitals (later). 
 
But does NOT eliminate neglect of correlation. 
 
Consequences of Orbital Approximation 

1) He2 predicted to be unbound (antibonding more antibonding than bonding is bonding). In 
reality, electron positions are correlated  van der Waals (dispersion) attraction. 
In orbital approximation: 

 
= product of probabilities  electron positions intrinsically independent. 

 
2) Incorrect description of dissociation. Examine large R behaviour of e-density in MO for 

H2. 

 
Cross terms vanish as R  ∞, i.e. dissociation products = 2H• + H++H-  De’s very bad. 

 
The Variation Principle 

 
Simple way of finding coefficients in the LCAO approach to build Molecular Orbitals. Vary the 
coefficients of a trial wavefunction until the lowest energy is achieved (by evaluating the 
expectation value of the Hamiltonian for each wavefunction). 

 

2 
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Hence let ψ contain some variable parameters and minimise energy wrt them. 
For a two orbital problem (A and B), must find the coefficients for which: 

0=
∂
∂

Ac
E

, and 0=
∂
∂

Bc
E

 

First step is to express the two integral in terms of the coefficients.  
 
The denominator is: 

∫ ∫∫∫∫ ++=+= τττττψ dABccdBcdAcdBcAcd BABABA 2)( 222222  

This equals cA
2+cB

2+2cAcBS, because the individual AOs are normalised and the third integral is 
the overlap integral, S. 
 
The numerator is: 

∫∫∫∫
∫∫

+++=

++=

ττττ

ττψψ

dBHAccdAHBccdBHBcdAHAc

dBcAcHBcAcdH

BABABA

BABA

22

)()(
 

 
These integrals are often expressed as shown. Hence: 

βαατψψ BABBAA ccccdH 222 ++=∫  

The completed expression for E is thus: 

Scccc
cccc

E
BABA

BABBAA

2
2

22

22

++
++

=
βαα

 

Its minimum is found by differentiation with respect to the two coefficients and setting the result 
equal to 0. The result is: 

(αA - E)cA + (β - ES)cB = 0 
(β - ES)cA + (αB - E)cB = 0 

These are the two secular equations. 
 

The parameter α is called a Coulomb integral. It is the energy of the electron when it occupies A 
or B respectively, and is negative. In a homonuclear diatomic, αA = αB = α. 
The parameter β is called a resonance integral. It vanishes when the orbitals do not overlap, and 
at equilibrium bond lengths it is normally negative. 
 
To solve the secular equations for the coefficients we need to know the energy E of the orbital. As 
for any set of simultaneous equations, the secular equations have a solution if the secular 
determinant is zero, that is, if: 

0=
−−

−−
EES

ESE

B

A

αβ
βα

 

This expands to a quadratic equation in E. Its two roots give the energies of the bonding and 
antibonding MOs as follows: 
Let this be a homonuclear diatomic (αA = αB = α). 

0)()( 22 =−−−=
−−
−−

ESE
EES
ESE

βα
αβ
βα

 

The solutions to this equation are: 

S
E

±
±

=± 1
βα

 

αA αB β β 
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The values of the linear combination are obtained by solving the secular equations using the two 
energies obtained from the secular determinant. The lower energy gives the coefficients for the 
bonding MO, the upper energy the coefficients for the antibonding MO.  
 
The secular equations gives expressions for the ratio of the coefficients in each case, so we need 
a further equation in order to find their individual values. This equation is obtained by demanding 
that the best wavefunction should also be normalised. This conditions means that, at this final 
stage, we must ensure that: 

12222 =++=∫ Sccccd BABAτψ  

 
Examples 
 
Homonuclear Diatomic 

Have shown above that 
S

E
±
±

=± 1
βα

 

The solutions are thus (subbing back into Secular Equations): 

 

BAA cc
S

c
S

E =
+

=
+
+

=+ ,
)]1(2[

1,
1 2

1

βα
 

And similarly for the other solution: 

BAA cc
S

c
S

E −=
−

=
−
−

=− ,
)]1(2[

1,
1 2

1

βα
 

In this case, the bonding orbital has the form: 

2
1)]1(2[ S

BA
+
+

=+ψ  

And the corresponding antibonding orbital: 

2
1)]1(2[ S

BA
−
−

=−ψ  

 
Heteronuclear Diatomic 

0)())(( 2 =−−−−=
−−

−−
ESEE

EES
ESE

BA
B

A βαα
αβ
βα

 

 
Common procedure to simplify is to set S = 0 (usually a good guide). 

cf. 
Quadratic 
Formula 

a
acbb

2
42 −±−
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The solutions can be expressed in terms of the parameter ξ: 

AB αα
βξ

−
=

||2arctan2
1  

And are: 
E- = αA - β cot ξ  ψ− = −A sin ξ + B cos ξ 
E+ = αA + β cot ξ  ψ+ = A cos ξ + B sin ξ 

 
An important feature revealed by these solutions is that as the difference |αA - αB| increases, the 
value of ξ decreases. When the energy difference is large the energies of the MOs differ only 
slightly from those of the AOs, which implies in turn that the bonding and antibonding effects are 
small. That is, the strongest bonding and antibonding effects are obtained when the two 
contributing orbitals have closely similar energies. The difference in energy between core and 
valence orbitals is the justification for neglecting the contribution of core orbitals to bonding. The 
core orbitals of one atom have a similar energy to the core orbitals of the other atom; but core-
core interaction is largely negligible because the overlap integral between them (and hence the 
value of β) is so small. 
 
If | αA - αB | = 2 | β |: 

 
If β/|αA-αB| is small  binomial expansion. 
Covalency maximised when αA - αB = 0. 
Wavefunctions: 

 
 
General Observations 
Orbitals of different symmetry do not mix, since Hij = ∫ φi H φj = β and Sij = ∫ φi φj vanish. 

Orbitals of very different energies do not mix, since β/(Hii-Hij) is small. 
Non-crossing rule – energies of 2 states of same symmetry can never be equal (as β ≠ 0). 
 

1st Row Homonuclear Diatomics 
Expect MO’s of 1s,2s,2px … 
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The Hydrogen Molecule 
This follows on easily from the H2

+ case, with an extra electron in the ground state orbital formed 
for that. Considering the electron density of the MO by evaluating P = 2ψ2, we find that: 

P = 2N+
2(φA

2 + φB
2 + 2φAφB) 

The normalising factor may be evaluated as usual, which gives N+
2 = 1/2(1+S). Hence, 

S
P BABA

+
++

=
1

222 φφφφ
 

Integrating over all space we obtain the total charge, namely two electrons, but the contributions 
to P come from three regions: the first (φA

2) term is the electron density in a single H atom (A) 
multiplied by 1/(1+S), so the corresponding charge contribution is 1/(1+S) as φA

2 is normalised. 
Similarly, the second terms gives the same contribution from the B atom. The final term gives a 
contribution 2S/(1+S) arising from the overlap region where φA and φB both have substantial 
values. This gives us a graphic way of describing the bond. 
 
Other Homonuclear Diatomics 
We can extend the ideas above in general for 1st row diatomics quite easily. When two identical 
atoms are brought together, the AOs φA and φB are replaced by MOs of the form N±(φA±φB). One 
of these will be bonding and the other antibonding, and the difference in energy between the two 
being determined by the appropriate bond integral β. At large distances the energies of both MOs 
tend to the energy of the AOs. This gives rise to the pictorial representations and terminology 
earlier. 
 
Rule 1 – 2 AO’s only make large contribution to an MO if Atomic Energies are similar. 
Rule 2 – orbitals on different atoms with zero overlap do not contribute to the same MO. 
 
Hence, ignore mixing of 1s with 2s,2p. 2s mixes with 2p. 

 
Heavy and Light Atoms 
If 2s and 2p interaction negligible, E2p – E2s >> bonding interaction  limit of large “penetration” = 
heavy atoms (O2 upwards). No mixing. 
 
Heavy: 
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But lighter  mixing. 

 
 “light” atoms (H2  N2). 

 

 
Different spatial arrangements of electrons  different inter-electron repulsion Energies. 
 
Order of energies is 3Σg

- < 1∆g < 1Σg
+ 

(cf. Hund’s Rules). 
 
Splitting of Ground State Configuration 
(NO, O2

+). 
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O2
+ & NO: [Be2] 3σg

21πu
41πg

1  2Π. 
 
Split due to Spin-Orbit Coupling (diagram right) – 
Different energies due to magnetic interaction ~ 0.02eV. 
 
Hence, 

 
MΩ = MΣ + MΛ. 

 
Splitting of Ground State in O2 and C2 (excited) is due to inter-electron repulsion. 
 
O2 = [Be2] 3σg

21πu
41πg

2  2 1Πg, which from direct product tables gives: 3Σg
- + 1∆g + 1Σg

+ 
2 orbitals are associated with the 2 orientations of the components of the orbital angular 
momentum (λ) along the internuclear axis: 

 

 

 
Heteronuclear Diatomic Molecules 

 
The same principles that apply to homonuclear diatomics can be extended to here, except for the 
fact that the coefficients cA and cB are no longer necessarily equal. Thus, contrasting the 
homonuclear and heteronuclear cases: 
 
Homonuclear, αA = αB 
We have already shown that in this case, αA = αB = α, and hence: 

S
E

±
±

=
1

βα
, and 

)]1(2[ S
BA

±

±
=

φφ
ψ  

The correlation between the bonding and antibonding levels and those in 
unbonded atoms is shown. 

 
When S << 1, the splitting of the AO levels is 2β, and since the magnitude of β (assumed 
negative) is larger the larger the overlap, we obtain a basis for the principle of maximum overlap. 
The forms of ψ1 and ψ2 are independent of β, being determined by symmetry, and in each MO the 
two AOs occur with equal weight at all internuclear distances. 
 
Heteronuclear, αA ≠ αB 
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Instead of solving the quadratic equation directly, we may obtain the general character of the 
result by a simple approximation. The effect of interaction arises from the term (β-ES)2, whose 
neglect leads to the solutions E = αA or E = αB, corresponding to the uncombined AOs. Let us 
suppose that αA is the lower of the two AO energies (i.e. atom A is more electronegative than 
atom B) and suppose the bonding MO has an energy close to αA. We can then substitute E ≈ αA 
everywhere except in the factor αA – E to estimate how much E is changed by the interaction. 
This yields: 

(αA-E)(αB-αΑ) − (β−αAS)2 = 0 
 Which gives, on rearranging, the bonding MO energy: 

AB

A
A

SE
αα

αβ
α

−
−

−=
2

1
)(

 

The lower of the AO energies is thus pushed down by approximately β2/(αB-αA) (for S = 0) to give 
the energy of the bonding MO. A similar argument shows that the upper level is pushed up by the 
same amount (for S = 0), i.e. 

AB

B
B

SE
αα

αβ
α

−
−

+=
2

2
)(

 

This can be summarised pictorially: 

 
In a heteronuclear molecule, a bonding MO leans towards the more electronegative atom (A in 
our case), while its antibonding partner leans towards the less electronegative atom (B). 
 

Shape of AH2 Molecules 
 
For 1st row A, valence MOs involve 2sA, 2px

A, 2py
A, 2pz

A and 2 x 1s on H. 
In linear (D∞h) geometry: 
2sA      σg

+  [ 1s1 + 1s2 = σg
+ ] 

2pz
A      σu

+  [ 1s1 – 1s2 = σu
+ ] 

2px
A, 2py

A     πu 
 
Expect: 

 
But now consider change as molecule bends: D∞h  C2v (descent in symmetry). 
Walsh Diagram: 
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Non-crossing Rule 
Consider mixing of 3a1 and 4a1: 

 
”mixing” of orbitals -  ψ =  cAφA + cBφB 
         3a1      4a1 
Secular Equations: 

 
Curves can only cross if A and B are of different symmetry at crossing point, (HAA = HBB), since 
HAB will then vanish. 
 

Huckel Theory 
 
In this approach, the π orbitals are treated separately from the σ orbitals, which is useful for 
conjugated molecules (i.e. those with a σ-framework with double bonds alternating). All the 
carbon atoms are treated identically, so all the Coulomb integrals α for the atomic orbitals that 
contribute to the π orbitals are set equal. 
 
The Secular Determinant 
 
LCAO approach for C 2p orbitals that lie perpendicular to the molecular plane. In ethene we 
would write ψ = cAA + cBB, and in butadiene ψ = cAA + cBB + cCC + cDD. 
 
For π electron systems of organic molecules. 

∑=
i

ii pc πψ  

The optimum coefficients and energies are found by the variation principle as above. That is, we 
have to solve the secular determinant. Examples: 
 
Ethene – 

2a1 stabilised because of bonding H-H 
interaction (weakly) and mixing with 
2pz. 
1b1 destabilised because reduced 
overlap and antibonding H-H 
interaction. 
3a1 strongly stabilised by mixing with 
4a1 (σg

+) – close in energy. 
1b2 remains non-bonding. 
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0=
−−
−−

EES
ESE

αβ
βα

 

 
Butadiene – 

0=

−−−−
−−−−
−−−−
−−−−

EESESES
ESEESES
ESESEES
ESESESE

DCDCDBDBDADA

CDCDCBCBCACA

ABABBCBCBABA

ADADACACABAB

αβββ
βαββ
ββαβ
βββα

 

 
The roots of ethene determinant can be found easily, but we can see that the butadiene in one is 
far more complex. The following addition Huckel Approximations are useful: 

1. All overlap integrals are set equal to zero. 
2. All resonance integrals between non-neighbours are set to zero. 
3. All remaining resonance integrals are set equal (to β). 

 
More concisely: 

- Hii = < pi | H | pi > = α (same for all atoms). 
- Hij = < pi | H | pj > = β (i bonded to j – negative). 
- Sij = δij ( = 1 if i = j, =0 otherwise). 

 
These approximations are obviously very severe, but they let us calculate at least a general 
picture of the molecular orbital energy levels with very little work. There are no distinctions 
between cis, trans, linear in Huckel Theory. The assumptions result in the following structure for 
the secular determinant: 

1. All diagonal elements are α - E 
2. Off-diagonal elements between neighbouring atoms are β. 
3. All other elements are 0. 

 
Ethene 

0)( 22 =−−=
−−
−−

βα
αβ
βα

E
EES
ESE

 

 

 
 
 
 
Allyl 
 
Secular Determinant is: 
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0)(2)(

)(]))[((
0

)(

0
0

0

23

222

=−−−=

−−−−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−=

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

EE

EEE
EE

E
E

E
E

E

c
b
a

αβα

αββαα
α

ββ
β

αβ
βα

α

αβ
βαβ

βα

 

Need to find the roots to this. Clearly Eo = α is a root. Also, (α-E)2 = 2β2  E± = α ± β√2 
Thus, 3 roots, as expected from a 3x3 determinant: 
Eo = α 
E+ = α + β√2 
E- = α - β√2 
 
For Eo, can see from the determinant that a = -c, therefore ψo = (1/√2)(φA-φB) 
For E±, (α-E)a + βb = 0, hence a = ±(b/√2), so ψ± = (φA/2) ± (φB/√2) + (φC/2) 
 
Physically, 
 
 
 
Butadiene 

0)(3)(
)()()()(

0
0

0
)()(

0
0

0

0

0
)(

0

00
0

0
00

4224

42222224

222

=+−−−=

+−−−−−−−=

−
+

−
−

−
−

−−
−

−
−=

−
−−

−
−

−
−=

=

−
−

−
−

ββαα

ββαβαβαα

α
β

β
αβ

βα
β

α
ββ

αβ
αβ

βα
α

αβ
βα

ββ
β

αβ
βαβ

βα
α

αβ
βαβ

βαβ
βα

EE
EEEE

EE
E

E
E

E
E

E

E
E

E
E

E
E

E
E

E
E

 

With x = (α-E)2/β2, the expanded determinant has the form of a quadratic equation x2 – 3x + 1 = 
0. The roots are x = 2.62 and 0.38. Therefore, the energies of the four LCAO-MOs are: 
E = α±1.62β, α±0.62β. 
 
2-fold symmetry, therefore symmetry-adapted AOs: 

 
MO corresponding to E1(ψ1) – sub into Secular Equations. 
-1.62βc1 + βc2 = 0, therefore 

c1 = c2/1.62 

E+ 
Eo 
E- 
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Similarly MO for ψ3 – 

 
The lower 2x2  E2 = α + 0.62β; E4 = α - 1.62β. 
Gives: 

 
This can be shown as: 

 
 
An important point emerges when we calculate the total π-electron binding energy, Eπ, the sum of 
the energies of each π-electron, and compare it with what we find in ethene. In ethene the total 
energy is:  

Eπ = 2(α+β) = 2α+2β. 
In butadiene it is: 

Eπ = 2(α+1.62β) + 2(α+0.62β) = 4α+4.48β.  
Therefore the energy of the butadiene molecule lies lower by 0.48β (about -36 kJ mol-1) than the 
sum of two individual π-bonds. This extra stabilisation of a conjugated system is the 
delocalisation energy, or resonance stabilisation energy. 
 
Charge Density on Atoms 

 
Equal charge on all atoms is a general property of alternant hydrocarbons. 
 
Bond Order 

 
i.e. only partial π-bond between central atoms. 
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Bond length in excited state: 
p12 = 2x(0.37x0.6) + (0.6x0.37) + (0.6x-0.37) = 0.45 
p23 = 2x(0.6)2 + (-0.37x0.37) + (-0.37)2 = 0.72 
 
Expect expansion of outer bond, contraction of central on excitation  vibrational excitation in 
electronic spectrum (Franck-Condon). 
 
Electron Paramagnetic Resonance 
Signal for Radical Cation. 
 
Hyperfine Coupling to protons is proportional to unpaired e-density on adjacent carbon. 

 
Susceptibility to Electrophilic Attack 

 
∆E = ∆Eσ + ∆Eπ 

i.e. change in energy of σ/π electrons. Imagine that ∆Eσ insensitive to position of attack. 

 
Hence, attack at position 1 is preferred. 
 
Rings & Aromaticity 
Estimating the delocalisation energy in these requires first finding the energies of the π-orbitals by 
Huckel Theory. 
 
For example, with cyclobutadiene, the secular determinant is set up using the same basis as for 
butadiene, but note that atoms A and D are also now neighbours. Then solve for the roots of the 
secular equation and assess the total π-bond energy. For the delocalisation energy, subtract from 
the total π-bond energy of two π-bonds. 
 
Secular Determinant: 
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0

0
0

0
0

=

−
−

−
−

E
E

E
E

αββ
βαβ

βαβ
ββα

 

(Note that the top right and bottom left corners are now β instead of 0). 
 
This determinant expands t: 

x(x-4) = 0, x = [(α-E)/β]2 
The solutions are x = 0 and x = 4, so the energies of the orbitals are: 

E = α+2β, α, α, α-2β 
Four electrons must be accommodated. Two occupy the lowest orbital (energy α+2β) and two 
occupy the doubly degenerate orbitals (energy α). The total energy is therefore 4α+4β. Two 
isolated π-bonds would have the same energy, therefore cyclobutadiene has no stabilising 
delocalisation energy. 
 
Benzene, on the other hand, is known to be stabilised. The Huckel Approximation as above gives 
rise to the following Secular Determinant: 

0

000
000

000
000
000

000

=

−
−

−
−

−
−

E
E

E
E

E
E

αββ
βαβ

βαβ
βαβ

βαβ
ββα

 

The roots of this are: 
E = α±2β, α±β, α±β 

These have symmetry labels associated with them (a2u, e1g, e2u, b2g). It is noted that the lowest 
energy orbital is bonding between all neighbouring atoms, the highest energy orbital is 
antibonding between each pair of neighbours, and the intermediate orbitals are a mixture of 
bonding, non-bonding and antibonding character between adjacent atoms. 
 
We find that the π-electron energy of benzene is: 

Eπ = 2(α+2β) + 4(α+β) = 6α + 8β. 
The delocalisation energy is thus 2β (~150 kJ mol-1). 
 
Cyclic Polyenes – 

E = α + 2β cos iπ/k 
For Even Membered Rings: 
N = 4: 

 
N = 6: 

 
N = 8: 

No stabilisation 

Delocalised
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For Odd Membered Rings, modify as N = 2k-1. 

E = α + 2β cos [2πi/(2k-1)] 
 
Results give rise to Huckel’s 4n+2 Rule. The rule refers to the properties of cyclic conjugated 
molecules in which there are N π-electrons; these depend on the nature of the integer N. If N is 
expressed in terms of a smaller integer n the rule may be stated as follows: 

• N = 4n+2  the molecule is highly stable. 
• N = 4n+1  the molecule is a free radical. 
• N = 4n  the molecule has a triplet ground state and is highly unstable. 

The reason for this is clear from the following diagram, which shows the distribution of energy 
levels about the reference level E = α for conjugated rings with N atoms: 

 
Because there is a single lowest orbital, while the others occur in degenerate pairs, the number of 
filled or partly filled levels must be of the form 1+2n (with n degenerate pairs); they will be exactly 
filled, to give a closed-shell ground state, by twice this number of electrons, i.e. N = 4n+2. If N is 
reduced by one the highest degenerate pair will contain only three electrons, the single occupied 
MO giving radical behaviour. If N is reduced by 2 the remaining two electrons will occupy the 
degenerate MO’s singly with spins parallel (Hund’s Rules), giving a triplet state. 
 
The 4n+2 rule is illustrated by benzene, cyclopentadienyl, and cyclobutadiene. Benzene is highly 
stabilised (N=4n+2 with n=1), cyclopentadienyl has radical properties (N=4n+1 with n=1), while 
cyclobutadiene (N=4n with n=1) should be highly unstable. Note that the cyclopentadienyl anion 
is stabilised (N=4n+2 with n=2), as is the cyclpropenium cation (N=4n+2 with n=0). 
 


