STATISTICAL MECHANICS NOTES

Boltzmann Factor

Physical quantity $\propto \exp[-\frac{f_E(E)}{const \times f_T(T)}]$

 $f_E(T)$ is a function of energy only, while $f_T(T)$ is a function of temperature only. The constant makes the expression dimensionless (E/T)

Boltzmann Law:

$$\frac{n_i}{n_j} = e^{-(\varepsilon_i - \varepsilon_j)/kT}$$

Distinct, Independent Particles -

Distinct \rightarrow can tell which is which (labels) a,b,c... Independent \rightarrow minimal interaction (can exchange energy in collision).

Hence, E =
$$\varepsilon^{a}$$
 + ε^{b} + ε^{c} + ... = $\sum_{i} \varepsilon^{i}$

Configurations –

Sharing energy amongst particles from a manifold of energy states, ε_0 , ε_1 , ε_2 ... etc ($\varepsilon_0 = 0$). At any instant, there are:

- n_o particles with ε_o .
- n_1 particles with ε_1 , etc.

This is the configuration. (Same Total Energy).

Statistical Weights -

Number of ways of reaching a given configuration, Ω . Represents the probability that the configuration can be reached.

$$\Omega = \frac{N!}{n_0!n_1!n_2!...}$$
, where x! = x(x-1)(x-2)(x-3)...3,2,1 and 0! = 1

Equal Probability of Configurations -

No bias to any configuration. This is the Principle of equal a priori probabilities.

Ν

Conservation of Number and Energy -

$$=\sum_{i}n_{i} \quad \& \qquad E=\sum_{i}\varepsilon_{i}n_{i}$$

Predominant Configuration -

Configuration with the largest statistical weight.

For very large number of configurations, the average peak of the distribution completely dominates so that everything else is negligible.

Maximisation Subject to Constraints -

n

Find maximum in distribution (Ω) subject to constraints of Conservation. Predominant configuration amongst N particles is found to have energy states populated as:

$$\frac{n_i}{N}e^{\alpha-\beta \mathbf{e}_i}$$
 , where α and β are constants under fixed temperature.

Identify α :

$$\frac{n_o}{N} = e^{\alpha} \qquad \boxed{\varepsilon_o = 0, n_o = 0 - \text{Ground State}}$$
$$\therefore \frac{n_o}{N} = e^{\alpha} e^{-\beta \varepsilon_i} = \frac{n_o}{N} = e^{-\beta \varepsilon}$$
$$\therefore \frac{n_i}{n_o} = e^{-\beta \varepsilon_i}$$

This is the T dependent ratio.

 $\beta = \frac{1}{kT}$ [can be proven, see later]

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. www.alchemyst.f2o.org

Molecular Partition Function

Derived from Boltzmann Law.

$$n_i = n_o e^{-\beta \mathbf{e}_i}$$

- 2 -

Eliminate n_o (generally not known):

 $N = n_0 + n_1 + n_2 + \dots = \sum_{all \ states} n_i$

Hence,

$$N = n_0 + n_0 e^{-\beta \epsilon_1} + n_0 e^{-\beta \epsilon_2} + \dots = n_0 \sum_{states} e^{-\beta \epsilon_1}$$

From this,

$$n_1 = \frac{N e^{-\beta \epsilon_1}}{\sum_{states} e^{-\beta \epsilon_1}} - 2$$

$$q = \sum_{states} e^{-\beta \epsilon_1} = 1 + e^{-\beta \epsilon_1} + e^{-\beta \epsilon_2} + \dots = (\epsilon_0 = 1, \beta = \frac{1}{kT})$$

Shows how particles distribute (partition) over accessible quantum states.

- Infinite series that converges more rapidly for increasing ε_i and increasing β .
- Can be evaluated as soon as $\beta_{\epsilon} >> 0$, so that $e^{-\beta_{\epsilon}} \rightarrow 0$.
- If $\varepsilon_1 \gg kT$, $q \rightarrow 1$.
- For successive energy gap $\Delta \varepsilon$, q >> 1 if $\Delta \varepsilon$ < kT.

<u>Degeneracy</u> –

Measure extent of particles escaping ground state.

 $T = 0K, q = 1 (n_0 = L).$

Increasing T, $q \rightarrow \infty$ (fewer particles in Ground State; infinite number of accessible states).

Applications -

Total Energy, E = $n_1 \varepsilon_1 + n_2 \varepsilon_2 + ... = \sum_{states} n_i \varepsilon_i$

From q:

$$E = \frac{\varepsilon_1 N e^{-\beta \varepsilon_1}}{\sum e^{-\beta \varepsilon_1}} + \frac{\varepsilon_2 N e^{-\beta \varepsilon_2}}{\sum e^{-\beta \varepsilon_1}} + \frac{N \sum \varepsilon_2 e^{-\beta \varepsilon_1}}{\sum e^{-\beta \varepsilon_1}}$$

Note that:

Internal Energy -

$$\frac{d}{d\beta}(e^{-\beta\epsilon_i}) = -\epsilon_i e^{-\beta\epsilon_i}$$

Thus,

$$E = -\frac{N}{q} \frac{dq}{d\beta} = -N\left(\frac{d\ln q}{d\beta}\right)$$
$$U = U(0) + E$$

$$\mathsf{U} = \mathsf{U}(0) - \mathsf{N} \frac{\partial \ln q}{\partial \beta}$$

Also, q depends on V (which depends on T) so must specify constant volume:

$$U = U(0) - N \left(\frac{\partial h}{\partial p}\right)_{V} = U(0) + N K T^{2} \left(\frac{\partial h}{\partial T}\right)_{V}$$

This can be combined with the only temperature-dependent term in q for translational energy (see later):

Such that:

$$U = U(0) + \frac{3}{2} N \left(\frac{\partial \ln \beta}{\partial \beta} \right)_{V} = U(0) + \frac{3N}{2\beta}$$

This can be compared to N atoms in a perfect gas:

And hence we see that $\beta = \frac{1}{kT}$ [as used earlier]

Entropy -

S = k ln Ω.
U =U(0) + E = U(0) +
$$\sum_{states} n_i \mathcal{E}_i$$

dU = $\underbrace{\sum_{n:dei}}_{heat}$ + $\underbrace{\sum_{s:dn:}}_{work}$

At constant V (as for internal energy) the spacing of successive energy states does not change on heating. Thus, $d\epsilon_i = 0$,

$$dU = \sum_{states} \varepsilon_i dn_i$$

From here, $dU = dq_{rev} = T dS$

[classical thermodynamics]
$$dS = \frac{dU}{T} = k \ge \beta \epsilon_i dn;$$

Condition for max Ω (predominant configuration):

$$\frac{\partial(n \Omega}{\partial n_{i}}) = \beta \varepsilon_{i} - \infty$$

$$dS = k \sum_{i} \left(\frac{\partial(n \Omega}{\partial n_{i}} \right) dn_{i} + k \alpha \sum_{i} dn_{i}$$

Number of particles is constant: $\sum_{states} dn_i = 0$

Therefore,

Molecule → Mole (Canonical Partition Function)

$$E = -N \left(\frac{d \ln q}{d\beta}\right) = \left(\left\{ \epsilon \right\} \right) = -N \left(\frac{d \ln q}{d\beta}\right),$$

$$M_{o}(ar E, E_{m}: E_{m} = -L \left(\frac{d \ln q}{d\beta}\right),$$

Reasonable when assuming non-interacting, and does not apply to other properties, e.g. S. Allow possibility of interactions by invoking the idea that every system has a set of system energy states which molecules can populate.

Canonical Partition Function, Q_N:

Canonical – according to a rule. Applies to states of constant amount, volume and temperature

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. www.alchemyst.f2o.org Hence,

$$E_{m} = \langle E_{i} \rangle = -\left(\frac{\partial h}{\partial \beta}\right)_{i}$$

Compare to:

Can continue to develop a statistical toolkit of functions, e.g. Entropy:

$$\begin{split} dS &= C_{v} \frac{dT}{T} \\ C_{v} &= \left(\frac{\partial(v - v(\omega))}{\partial T}\right)_{v} = \left[\frac{\partial}{\partial v}(kT^{2}(\frac{\partial(w \omega)}{\partial T}))_{v}\right]_{v} \\ &= 2kT\left(\frac{\partial(w \omega)}{\partial T}\right)_{v} + kT^{2}\left(\frac{\partial^{2}w \omega}{\partial T}\right)_{v} \\ - \cdot \cdot S &= k \ln \omega + kT\left(\frac{\partial(w \omega)}{\partial T}\right)_{v} + S_{o} \end{split}$$

Third Law \rightarrow S₀ = 0, on integrating:

$$S = \frac{(v - u(\omega))}{T} + k \ln 0$$

Compare to
$$A = U - TS$$

 $A - A(0) = U - U(0) - TS$
 $S = (U - U(0)) - (A - A(0))$
i.e.
 $A - A(0) = - KT \ln G$

Massieu Function

$$J = - {^{A}}/_{T}$$

This gives:

$$T = -\frac{(A - A(\omega))}{T} = k \ln \omega \quad (MASSIEUBRIFLE)$$

Links Statistical and Classical Thermodynamics.

$$U = T^{2} \left(\frac{\partial(A/T)}{\partial T} \right)_{V} = \left(\frac{\partial(A/T)}{\partial(I/T)} \right)_{V}$$

$$U = U(a) = kT^{2} \left(\frac{\partial(AQ}{\partial T} \right)_{V} \qquad (as shown earlier)$$

$$f(so) = -k \left(\frac{\partial(AQ}{\partial(I(T))} \right)_{V} = -\left(\frac{\partial(AQ}{\partial B} \right)_{V}$$

Also, Pressure:

$$\rho = -\frac{\partial A}{\partial v} = \rho = \sqrt{(\frac{\partial A}{\partial v})_{T}}$$

 $C = \frac{3U}{2U}$

Heat Capacity,

$$C_{V} = \left[\frac{\partial}{\partial \tau} \left[T^{2} \left(\frac{\partial (A(\tau))}{\partial \tau}\right)_{V}\right] = 2k\tau \left(\frac{\partial (h Q)}{\partial \tau}\right)_{\tau} + k\overline{\Gamma}^{2} \left(\frac{\partial^{2} (h Q)}{\partial \tau^{2}}\right)_{\tau}$$

Entropy:

$$S = \frac{\partial A}{\partial T} = k \ln Q + k T \left(\frac{\partial \ln Q}{\partial T} \right)_{V}$$

= $\frac{F}{T} + k \ln Q$

Enthalpy:

$$H = U + \rho V$$

$$H = T^{2} \left(\frac{\partial (A(\tau))}{\partial \tau} \right)_{V} - \left(\frac{\partial A}{\partial V} \right)_{T}$$

$$\Rightarrow H - H(0) = kT^{2} \left(\frac{\partial (n Q)}{\partial T} \right)_{V} + kTV \left(\frac{\partial (n Q)}{\partial V} \right)_{T}$$

$$H(0) = U(0) = A(0) \left[= \zeta(0) \right]$$

$$PV = n kT \Rightarrow \left(perfect gas) \Rightarrow$$

$$H - H(0) = kT^{2} \left(\frac{\partial (n Q)}{\partial T} \right)_{V} + NKT$$

Gibbs Free Energy:

$$G = A + pV$$

$$G = A - V \left(\frac{\partial A}{\partial V}\right)_{T}$$

$$G - G(o) = -kt G Q + kTV \left(\frac{\partial G}{\partial V}\right)_{T}$$

Perfect Gas →

 $G - G(0) = -kT \ln Q + nkT.$

Chemical Potential:

$$dA = -p \frac{\partial V}{\partial a} + p \frac{\partial A}{\partial a}$$

$$B = \frac{N}{N_{aV}} = \frac{\partial A}{\partial a} \int_{V,T} = N_{aV} \left(\frac{\partial A}{\partial a} \right)_{V,T}$$

$$= -R + \frac{\partial L}{\partial N} \int_{V,T}$$

Independent Systems:

$$Q = \begin{cases} \frac{9^{N}}{N!} - ind + INDISTINCUISHABLE} \\ q_{N} - ind + DISTINCUISHABLE} \end{cases}$$

Use Stirling's Approximation:

e.g.

 $-kT \ln Q = -NkT \ln q + NkT \ln N - NkT$

 $\ln N! \approx N \ln N - N$

Thus, $G - G(0) = -NkT \ln (q/N)$ [For INDISTINGUISHABLE] $G - G(0) = -NkT \ln q$ [For DISTINGUISHABLE]

Translational Partition Function, qtrs

Consider particle in a box:

$$\varepsilon_x = \frac{{n_x}^2 h^2}{8m {l_x}^2}$$

Sum over all accessible states:

$$q_{\text{trs,pc}} = \sum_{\alpha,\mu} e^{-\beta n_x^2 h^2 / 8 m \left(\frac{2}{x}\right)}$$

But practically all energy levels densely packed, so becomes an integral:

$$q_{\text{HS}, \mathbf{x}} = \begin{cases} e^{-\beta_n \frac{1}{2} h^2 / \beta_n h_n^2} \, dn_{\mathbf{x}} \\ q_{\text{HS}, \mathbf{x}} = \left(\frac{2\pi m}{\beta}\right)^{l_2} \frac{l_x}{h} \\ q_{\text{HS}, \mathbf{x}, \mathbf{y}, \mathbf{z}} = \left(\frac{2\pi m}{\beta}\right)^{3/2} \frac{l_x l_y l_x}{h^3} \quad (\text{i.e. 3d Scubed}) \\ q_{\text{HS}} = \left(\frac{2\pi m}{\beta^2}\right)^{3/2} V = \left(\frac{2\pi m \ln T}{h^2}\right)^{3/2} V$$

Canonically,

$$\mathcal{O}_{\text{trs}} = \frac{q_{\text{trs}}}{N!} = \frac{1}{N!} \left[\frac{1}{\sqrt{2\pi}} \sqrt{2\pi} \sqrt{2} \sqrt{2} \right]^{N}$$

Collecting constants,

$$Q_{\text{trs}} = \left(\frac{2\pi L}{h^2 L}\right)^{3/2} \left(MT\right)^{3/2} \bigvee$$

Thermodynamic Functions for an Ideal Monatomic Gas

$$\ln \mathcal{O}_{trs} = \frac{3}{2} N \ln (2\pi m)^{+} \frac{3}{2} N \ln T + N \ln Y - 3N \ln h - \ln N^{1}$$

Thus, derivatives simple:

$$\frac{\partial \left(\int Q_{TS} \right)}{\partial T} = \frac{3N}{2T} \qquad \frac{\partial^2 \int Q_{TS}}{\partial T^2} = -\frac{3N}{2T^2}$$
$$\frac{\partial \left(\int Q_{TS} \right)}{\partial V} = \frac{N}{V}$$

These can then be used in the functions found earlier. Hence,

$$E_{trs} = \frac{4}{2} \frac{3}{2} NkT$$

$$P = \frac{NkT}{V}$$

$$C_{V,m} = \frac{3R}{2} Nk$$

Entropy more complex, since In Q_{trs} appears. It proceeds as:

$$S = k \ln Q_{HS} + kT \left(\frac{2 \ln Q_{HS}}{2T}\right)_{V}$$

$$k \ln Q_{rrs} = k \ln \frac{1}{N!} q^{N}$$
$$= k \left(\ln \frac{1}{N!} + \ln q^{N} \right) = k \left(N \ln q - \ln N! \right)$$

Use Stirling's Approximation: In $N! \approx N \ln N - N$

$$k \left(n \operatorname{Q}_{TTS} = k(N \ln q - N \ln N + N) \right)$$
$$= N k \left(1 + \ln \frac{q}{N} \right)$$

Thus,

$$S = Nk(1 + ln \frac{q}{N}) + \frac{3}{2}Nk$$
$$S = Nk(\frac{q}{N} - \frac{q}{N})$$

Overall,

$$S = Nk \left[\frac{5}{2} + l_{\Omega} \left[\left(\frac{2\pi m kT}{h^2} \right)^{3/2} \frac{V}{N} \right] \right]$$

One mole of Ideal Gas →

This is the **Sackur-Tetrode Equation**. The constants add up to 172.29 J K⁻¹ mol⁻¹ [20.723R]

$$\frac{1}{p} = \frac{V}{RT} = 3 \ln p^{-1} = \ln V - \ln R - \ln T$$

$$S_{m} = R \ln V + \frac{3}{2} R \ln T + \frac{3}{2} R \ln M + constant$$
(LS18-605R)

Note that:

$$\Delta S_{\tau} = R \ln \frac{V_{z}}{V_{i}}$$

$$\Delta S_{v} = \frac{3}{2}R \ln \frac{T_{z}}{T_{i}} = C_{v} \ln \frac{T_{z}}{T_{i}}$$

$$\left(\frac{3}{2}R \ln M + constant\right) - not known starting$$

Ideal Diatomic Gas – Rotational Partition Function.

For a rigid rotor:

$$\varepsilon_{J} = J(J+1)\frac{h^{2}}{8\pi^{2}I} = hcBJ(J+1) \qquad I = \mu r^{2}$$

$$\varepsilon_{J} = J(J+1)k\Theta_{r} = \Theta_{r} = \frac{hcB}{8\pi^{2}Ik} = \frac{hcB}{k}$$

$$\theta_{r} \text{ may equal } B/k \qquad (depends on units)$$

$$q_{rot} = \sum_{g_{J}e} e^{-\varepsilon_{J}/kT} = \sum (2J+1)e^{-J(J+1)\Theta_{r}/T}$$

If I is not too small and T not too low, then appreciable number of rotational states are occupied, and there is a virtual continuum as for q_{trs}:

$$q_{rot} = \int_{0}^{\infty} (2J+1) e^{-J(J+1)\Theta_{r}/T} dJ$$

This gives $q_{rot} = \frac{T}{\Theta_{r}} = \frac{8\pi^{2}IhT}{h^{2}}$

Problems tend to arise when T is nearly 0K and the molecule contains Hydrogen.

This expression otherwise works for all heteronuclear diatomics. Special considerations required for homonuclear diatomics. This is due to over-counting of rotational states by a factor of 2. This is because 180° rotation of X-X gives a result indistinguishable from 360° . There $q_{rot}/2$ required for all linear symmetric molecules.

Or, T_{10}

Where:

 σ = symmetry factor (= 2 for homonuclear diatomic, = 1 for heteronuclear diatomic). σ = 2 for H₂O and σ = 3 for NH₃, for example.

Quantum Mechanically,

Interchange of identical nuclei may leave ψ unchanged, i.e. symmetric, or $\psi \rightarrow -\psi \rightarrow -\psi$ antisymmetric.

Symmetric \rightarrow boson (integral), while antisymmetric \rightarrow fermion (half-integral).

$\psi_{tot} = \psi_{trs}.\psi_{rot}.\psi_{vib}.\psi_{el}.\psi_{ns}$

 ψ_{ns} = nuclear spin wavefunction. Symmetric or antisymmetric depending on whether 2 nuclear spin states are parallel / antiparallel.

 ψ_{rot} = antisymmetric or symmetric. For even J it is symmetric, for odd J it is antisymmetric.

 ψ_{el} = antisymmetric or symmetric. Homonuclear diatomic is usually ${}^{1}\Sigma_{g}^{+}$ = symmetric. Only O₂ is common exception, ${}^{3}\Sigma_{g}^{-}$ is antisymmetric.

 ψ_{trs} = only motion of centre of mass, so no effect on symmetry (symmetric).

 ψ_{vib} = only depends on internuclear distance (symmetric).

Thus, in hydrogen I = $\frac{1}{2}$ and the nucleus is a fermion so the ψ_{tot} is antisymmetric. This requires odd J to give symmetric nuclear spin and even J to give antisymmetryic.

In Deuterium, I = 1 (boson) $\rightarrow \psi_{tot}$ is symmetric. Thus, Odd J \rightarrow paired nuclear spin. Even J \rightarrow parallel nuclear spin.

Thermodynamic Functions with qrot:

$$\ln Q_{rat} = N \ln T + N \ln \left[\frac{8\pi^{2}Ik}{\sigma h^{2}}\right]$$

$$= U_{rat} = hT^{2} \left(\frac{3\ln Q_{rat}}{\sigma T}\right)_{v} = N \kappa T^{2} \left(\frac{3}{\sigma T} \ln T\right)$$

$$= N k T \left(diatomics\right)$$

Applies to all linear molecules with only two degrees of freedom in rotation. Molar \rightarrow U_{rot} = RT, C_{rot,m} = R.

For entropy,

$$S_{rot} = kT \left(\frac{N(n-q)}{\partial T} \right) + k \ln q = \frac{N(n+1)}{T} + k \ln q$$
$$= \frac{N(kT)}{T} + k \ln \left[\frac{8\pi (IkT)}{\sigma h^{2}} \right]^{N}$$
$$S_{rot} = N(kT) + \ln \left[\frac{1T}{\sigma} + \ln \left(\frac{8\pi^{2} h}{h^{2}} \right) \right]$$
$$dependence on p.$$

Extending to polyatomic, non-linear molecules - must consider 3 independent motions of inertia:

$$q_{rot} = \frac{\sqrt{\pi}}{\sigma} \left[\left(\frac{T}{\Theta_{r,z}} \right) \left(\frac{T}{\Theta_{r,z}} \right) \left(\frac{T}{\Theta_{r,z}} \right)^{-1} \right]^{\frac{1}{2}}$$

Ortho and Para Spin States

In general, for homonuclear diatomic with nuclear spin I, each nucleus have p (=2I+1) spin states, and a total of p^2 nuclear spin wavefunctions to include in ψ_{rot} . Of these p^2 ,

½ p(p+1) = symmetric	[ORTHO]
$\frac{1}{2}$ p(p-1) = antisymmetric	[PARA]

This is true whether they are bosons or fermions.

Proton , $I = \frac{1}{2}$, $\psi_{tot} = an$	tisym	metric.	
2 spin states, \uparrow or \downarrow , the	erefor	e 4 ψ _{ns} (p²)	
Thus,			
3 ortho (symmetric)	=	ODD J	[o-Hydrogen]
1 para (antisymmetric)	=	EVEN J	[p-Hydrogen]

Deuteron, I = 1, ψ_{tot} = symmetric. 3 spin states per nucleus, so 9 per molecule (p²)

6 x ortho (symmetric) =	EVEN J	[o-Deuterium]
3 x para (antisymmetric)=	ODD J	[p-Deuterium]

Therefore ortho-Hydrogen \rightarrow Odd J, 3:1 ratio with odd predominating (due to statistical weight). Similarly, ortho-Deuterium \rightarrow Even J, 6:3 ratio with even predominating.

Ratios apply to e.g. rotational Raman Spectrum.

At high temperatures, hydrogen exists in an equilibrium mixture of spin states favouring o-Hydrogen by 3:1.

At low temperatures, there is an increased tendency for J = 0. Even \rightarrow switch to p-Hydrogen. This conversion is slow.

Normal Hydrogen $(n-H_2) = 3:1$ mixture.

<u>Nuclei with zero spin –</u>

Some nuclei are I=0 (e.g. ¹⁶O).

8 protons and 8 neutrons occupy their own energy manifolds (closed shell configurations – all spins paired). Also true for 12 C.

 $p = 2I + 1 \rightarrow O_2$ or CO_2 have only 1 spin state.

I = 0 \rightarrow integral, therefore boson, so ψ_{tot} = symmetric.

Hence,

 $CO_2 \rightarrow$ only even J.

 $O_2 \rightarrow only odd J.$

Reason now is that ground electronic state is ${}^{3}\Sigma_{g}^{-}$ (i.e. antisymmetric), therefore rotation must also be antisymmetric (odd), unlike CO₂.

Vibrations in an Ideal Diatomic, qvib

Orders of magnitude: $q_{vib} > q_{rot} > q_{trs}$ are usually in the ratio 1:10:250-300 orders of magnitude. Thus, cannot use the continuum approximation for q_{vib} . q_{vib} @ 300K \approx 1.

Simple Harmonic -

Always non-degenerate in diatomics. Not so for polyatomics – linear \rightarrow (3N-5) normal vibrational modes, while non-linear \rightarrow (3N-6).

 $\epsilon_o = 0$, $\epsilon_1 = hv$, $\epsilon_2 = 2hv$, etc, due to reference against ground state of ½hv. Thus,

$$q_{vib} = \sum e^{-\beta e_{vib}} = 1 + e^{-\beta hv} + e^{-2\beta hv} + e^{-3\beta hv} + \dots$$

This gives a geometric series:

$$q_{vib} = \frac{1}{1 - e^{-\beta hv}} = \frac{1}{1 - e^{-q_{vib}/T}} \left(q_{vib} - \frac{hv}{K} \right)$$

This is true for diatomics only. For polyatomics, just consider each normal mode of vibration separately.

Vibrational Energy spacings are much larger than Rotational, therefore $\theta_{vib} \approx 10^2 - 10^3$, $\theta_{rot} \approx 10^1 - 10^2$.

Polyatomics -

$$q_{vib} = TT(q_{vib}^{(\alpha)}) = q_{vib}^{(1)} \times q_{vib}^{(2)} \times q_{vib}^{(3)} \times \dots$$

 $(1)_{r}(2)_{r}(3)_{r} = normal modes 1,23...$

Independent and factorisable, therefore ignore anharmonicity (except at high T).

High Temperature Limit – At high T, linear in q_{vib} against T.

Expand $1 - e^{-\theta_{vib}/T}$:

$$= \frac{1}{2^{1/2}} \frac{1}{1 - 1 + (Q_{1/2} + 1) + ..} = \frac{1}{Q_{1/2}} \quad (high T limit)$$

$$= \frac{1}{2^{1/2}} \frac{1}{1 + (Q_{1/2} + 1) + ..} = \frac{1}{Q_{1/2}} \quad (high T limit)$$

Thermodynamic Functions -

$$\mathcal{O}_{v,b} = kT^{2} \left(\frac{\partial (h \varphi_{0})}{\partial T} \right)_{v} = \frac{Nk\Theta_{v,b}}{(e^{\Theta_{v,b}/T} - 1)}$$

Note: far less simple than U_{trs} and U_{rot} .

At high T: $U_{\text{vib,m}}$ = RT (for each normal mode) At 300 K: $U_{\text{vib,m}} = \frac{3000R}{(e^{10} - 1)} \approx \frac{R}{7}$

Also note that if ε_0 is set to ½hv instead, then must add this to the result.

Heat Capacity -

$$C_{vib,m} = \frac{\partial U}{\partial T} = R \left(\frac{\partial v_{ib}}{T} \right)^{2} \frac{e^{\partial v_{ib}/T}}{(e^{\partial v_{ib}/T}-1)^{2}} \qquad EINSTETN \\ C_{vib,m} = R \int_{E} \left(\frac{\partial v_{ib}}{T} \right) \qquad \int_{E} \frac{U^{2}e^{u}}{(e^{u}-1)^{2}} \qquad u = \frac{\partial v_{ib}}{T} \\ \left(\frac{E_{iasteria}}{E_{iasteria}} \right) \qquad \int_{E} \frac{U^{2}e^{u}}{(e^{u}-1)^{2}} \qquad u = \frac{\partial v_{ib}}{T}$$

Entropy -

$$S_{vib} = \frac{U_{vib} - U_{vib}(o)}{T} - \frac{A_{vib} - A_{vib}(o)}{T} = \frac{U_{vib} - U_{vib}(o)}{T} + k \ln Q_{vib}$$

$$\ln Q_{vib} m = Lk \ln q_{vib} = R \ln q_{vib}$$

$$\frac{S_{uib} m}{R} = \frac{Q_{vib}/T}{(e^{-Q_{vib}/T} - 1)} - \ln (1 - e^{-Q_{vib}/T})$$

Electronic Partition Function

$$q_{el} = \sum_{i} q_{\pi i} e^{-\epsilon_{el} i/kT} = q_0 e^{-0} + 0$$
 (higher terms) = q_0

Ground States are commonly degenerate (not O_2 though, $g_1 = 1$).

For Atoms, use ${}^{(2S+1)}\Gamma_J$ and $g_o = 2J+1$. For molecules, use ${}^{(2S+1)}\Gamma$ and $g_o = 2S+1$.

Excited States can be approached in a similar manner.

Usually, the energy gap from ground state to 1^{st} excited state is large and the above applies. If the gap is not negligible compared to kT (i.e. $\theta_{el}/T \ll 1$) then:

(Higher states than the 1st are rarely occupied).