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STATISTICAL MECHANICS NOTES 
 
Boltzmann Factor 
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Distinct, Independent Particles – 
Distinct  can tell which is which (labels) a,b,c… 
Independent  minimal interaction (can exchange energy in collision). 
Hence, E = εa + εb + εc + … = ∑

i

iε  

Configurations – 
Sharing energy amongst particles from a manifold of energy states, εo, ε1, ε2 … etc (ε0 = 0). 
At any instant, there are: 

• no particles with εo. 
• n1 particles with ε1, etc. 

This is the configuration. (Same Total Energy). 
 
Statistical Weights – 
Number of ways of reaching a given configuration, Ω. Represents the probability that the 
configuration can be reached. 
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=Ω , where x! = x(x-1)(x-2)(x-3)…3,2,1 and 0! = 1. 

Equal Probability of Configurations – 
No bias to any configuration. This is the Principle of equal a priori probabilities. 
 
Conservation of Number and Energy – 
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Predominant Configuration – 
Configuration with the largest statistical weight. 
For very large number of configurations, the average peak of the distribution completely 
dominates so that everything else is negligible. 
 
Maximisation Subject to Constraints – 
Find maximum in distribution (Ω) subject to constraints of Conservation. 
Predominant configuration amongst N particles is found to have energy states populated as: 
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ni eβα − , where α and β are constants under fixed temperature. 
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This is the T dependent ratio. 
β = 1/kT   [ can be proven, see later ] 

εο = 0, no = 0 – Ground State 

fE(T) is a function of energy only, while fT(T) is a 
function of temperature only. The constant 
makes the expression dimensionless (E/T) 
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Molecular Partition Function 
Derived from Boltzmann Law. 

ienn oi
eβ−=  

Eliminate no (generally not known): 
N = no + n1 + n2 + … = ∑

statesall
in  

Hence, 

 
Shows how particles distribute (partition) over accessible quantum states. 

• Infinite series that converges more rapidly for increasing εi and increasing β. 
• Can be evaluated as soon as βε >> 0, so that e-βε  0. 
• If ε1 >> kT, q  1. 
• For successive energy gap ∆ε, q >> 1 if ∆ε < kT. 

 
Degeneracy – 

 
Measure extent of particles escaping ground state. 
T = 0K, q =1 (no = L). 
Increasing T, q  ∞ (fewer particles in Ground State; infinite number of accessible states). 
 
Applications – 
 
Total Energy, E = n1ε1 + n2ε2 + … = ∑

states
iin ε  

From q: 

 
Note that: 

 
Thus, 

 
Internal Energy – 

U = U(0) + E 
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U = U(0) - N
β∂

∂ qln
 

Also, q depends on V (which depends on T) so must specify constant volume: 

 
This can be combined with the only temperature-dependent term in q for translational energy (see 
later): 

ln q = -3/2 ln β 
Such that: 

 
This can be compared to N atoms in a perfect gas: 

U = U(0) + 3/2NkT 
And hence we see that β = 1/kT  [ as used earlier ] 
 
Entropy – 

S = k ln Ω. 
U =U(0) + E = U(0) + ∑

states
iin ε  

 
At constant V (as for internal energy) the spacing of successive energy states does not change 
on heating. Thus, dεi = 0, 

dU = i
states

idn∑ε  

From here, dU = dqrev = T dS   [ classical thermodynamics ] 

 
Condition for max Ω (predominant configuration): 

 
Number of particles is constant: ∑

states
idn = 0 

Therefore, 
dS = k d(ln Ω) 

S = k ln Ω. 
 
Molecule  Mole (Canonical Partition Function) 

 
Reasonable when assuming non-interacting, and does not apply to other properties, e.g. S. 
Allow possibility of interactions by invoking the idea that every system has a set of system energy 
states which molecules can populate. 
 
Canonical Partition Function, QN : 

 

Canonical – according to a rule. 
Applies to states of constant amount, 
volume and temperature 
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Hence, 

 
Compare to: 

 
Can continue to develop a statistical toolkit of functions, e.g. Entropy: 

 
Third Law  S0 = 0, on integrating: 

 
Massieu Function 

J = - A/T 
This gives: 

 
Links Statistical and Classical Thermodynamics. 

 
Also, Pressure: 

 
Heat Capacity, 

 
Entropy: 

 
Enthalpy: 
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Gibbs Free Energy: 

G = A + pV 

G = A – V 
TV
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Perfect Gas   

G – G(0) = - kT ln Q + nkT. 
 
Chemical Potential: 

 
Independent Systems: 

 
Use Stirling’s Approximation: 

ln N! ≈ N ln N – N 
e.g.  

–kT ln Q = -NkT ln q + NkT ln N – NkT 
Thus, 
G – G(0) = -NkT ln (q/N)  [ For INDISTINGUISHABLE ] 
G – G(0) = -NkT ln q  [ For DISTINGUISHABLE ] 
 

Translational Partition Function, qtrs 
Consider particle in a box: 

2

22

8 x

x
x ml

hn
=ε  

Sum over all accessible states: 

 
But practically all energy levels densely packed, so becomes an integral: 
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Canonically, 

 
Collecting constants, 

 
 
Thermodynamic Functions for an Ideal Monatomic Gas 

 
Thus, derivatives simple: 

 
These can then be used in the functions found earlier. Hence, 

 
Entropy more complex, since ln Qtrs appears. It proceeds as: 

 
Use Stirling’s Approximation: ln N! ≈ N ln N – N 

 
Thus, 

 
Overall, 

 
One mole of Ideal Gas  
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This is the Sackur-Tetrode Equation. The constants add up to 172.29 J K-1 mol-1 [ 20.723R ] 

 
Note that: 

 
Ideal Diatomic Gas – Rotational Partition Function. 

 
For a rigid rotor: 

 
If I is not too small and T not too low, then appreciable number of rotational states are occupied, 
and there is a virtual continuum as for qtrs: 

 
Problems tend to arise when T is nearly 0K and the molecule contains Hydrogen. 
 
This expression otherwise works for all heteronuclear diatomics. Special considerations required 
for homonuclear diatomics. This is due to over-counting of rotational states by a factor of 2. This 
is because 180o rotation of X-X gives a result indistinguishable from 360o. 
There qrot/2 required for all linear symmetric molecules. 
Or, 

qrot = T/σθr 
Where:  
σ = symmetry factor (= 2 for homonuclear diatomic, = 1 for heteronuclear diatomic). 
σ = 2 for H2O and σ = 3 for NH3, for example. 
 
Quantum Mechanically, 
Interchange of identical nuclei may leave ψ unchanged, i.e. symmetric, or ψ  -ψ  
antisymmetric.  
Symmetric  boson (integral), while antisymmetric  fermion (half-integral). 

θr may equal B/k 
(depends on 

units) 
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ψtot =ψtrs.ψrot.ψvib.ψel.ψns 
ψns = nuclear spin wavefunction. Symmetric or antisymmetric depending on whether 2 nuclear 
spin states are parallel / antiparallel. 
ψrot = antisymmetric or symmetric. For even J it is symmetric, for odd J it is antisymmetric. 
ψel = antisymmetric or symmetric. Homonuclear diatomic is usually 1Σg

+ = symmetric. Only O2 is 
common exception, 3Σg

- is antisymmetric. 
ψtrs = only motion of centre of mass, so no effect on symmetry (symmetric). 
ψvib = only depends on internuclear distance (symmetric). 
 
Thus, in hydrogen I = ½ and the nucleus is a fermion so the ψtot is antisymmetric. 
This requires odd J to give symmetric nuclear spin and even J to give antisymmetryic. 
 
In Deuterium, I = 1 (boson)  ψtot is symmetric. Thus, 
Odd J  paired nuclear spin. 
Even J  parallel nuclear spin. 
 
Thermodynamic Functions with qrot: 

 
Applies to all linear molecules with only two degrees of freedom in rotation. 

Molar  Urot = RT, Crot,m = R. 
 
For entropy, 

 
Extending to polyatomic, non-linear molecules – must consider 3 independent motions of inertia: 

 
 

Ortho and Para Spin States 
In general, for homonuclear diatomic with nuclear spin I, each nucleus have p (=2I+1) spin states, 
and a total of p2 nuclear spin wavefunctions to include in ψrot. 
Of these p2,  

½ p(p+1) = symmetric   [ ORTHO ] 
½ p(p-1) = antisymmetric  [ PARA ] 

This is true whether they are bosons or fermions. 
 
Proton, I = ½ , ψtot = antisymmetric. 
2 spin states, ↑ or ↓, therefore 4 ψns (p2) 
Thus, 
3 ortho (symmetric)  = ODD J   [ o-Hydrogen ] 
1 para (antisymmetric)  = EVEN J   [ p-Hydrogen ] 
 
Deuteron, I = 1, ψtot = symmetric. 
3 spin states per nucleus, so 9 per molecule (p2) 
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6 x ortho (symmetric) = EVEN J   [ o-Deuterium ] 
3 x para (antisymmetric) = ODD J   [ p-Deuterium ] 
 
Therefore ortho-Hydrogen  Odd J, 3:1 ratio with odd predominating (due to statistical weight). 
Similarly, ortho-Deuterium  Even J, 6:3 ratio with even predominating. 
Ratios apply to e.g. rotational Raman Spectrum. 
At high temperatures, hydrogen exists in an equilibrium mixture of spin states favouring o-
Hydrogen by 3:1. 
At low temperatures, there is an increased tendency for J = 0. Even  switch to p-Hydrogen. 
This conversion is slow. 
Normal Hydrogen (n-H2) = 3:1 mixture. 
 
Nuclei with zero spin – 
Some nuclei are I=0 (e.g. 16O). 
8 protons and 8 neutrons occupy their own energy manifolds (closed shell configurations – all 
spins paired). Also true for 12C. 
p = 2I + 1  O2 or CO2 have only 1 spin state. 
I = 0  integral, therefore boson, so ψtot = symmetric. 
Hence, 

CO2  only even J. 
O2  only odd J. 

Reason now is that ground electronic state is 3Σg
- (i.e. antisymmetric), therefore rotation must also 

be antisymmetric (odd), unlike CO2. 
 

Vibrations in an Ideal Diatomic, qvib 
 
Orders of magnitude: qvib > qrot > qtrs are usually in the ratio 1:10:250-300 orders of magnitude. 
Thus, cannot use the continuum approximation for qvib. 
qvib @ 300K ≈ 1. 
 
Simple Harmonic – 

 
Always non-degenerate in diatomics. Not so for polyatomics – linear  (3N-5) normal vibrational 
modes, while non-linear  (3N-6). 
εο = 0, ε1 = hv, ε2 = 2hv, etc, due to reference against ground state of ½hv. Thus, 

 
This gives a geometric series: 

 
This is true for diatomics only. For polyatomics, just consider each normal mode of vibration 
separately. 
 
Vibrational Energy spacings are much larger than Rotational, therefore θvib ≈ 102-103, θrot ≈ 101-
102. 
 
Polyatomics – 

 
Independent and factorisable, therefore ignore anharmonicity (except at high T). 
 
High Temperature Limit – 
At high T, linear in qvib against T. 
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Expand Tvibe /1 θ−− : 

 
Thermodynamic Functions – 

 
Note: far less simple than Utrs and Urot. 
 
At high T: Uvib,m = RT (for each normal mode) 

At 300 K: Uvib,m = 
7)1(

3000
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Also note that if ε0 is set to ½hv instead, then must add this to the result. 
 
Heat Capacity – 

 

 
 
Entropy – 

 
 

Electronic Partition Function 

 
Ground States are commonly degenerate (not O2 though, g1 = 1). 
 
For Atoms, use (2S+1)ΓJ and go = 2J+1. 
For molecules, use (2S+1)Γ and go = 2S+1. 
 
Excited States can be approached in a similar manner. 
 
Usually, the energy gap from ground state to 1st excited state is large and the above applies. If 
the gap is not negligible compared to kT (i.e. θel/T << 1) then: 

 
(Higher states than the 1st are rarely occupied).  


