VIBRATION-ROTATION SPECTRA

SUMMARY
Every vibrational energy level has a rotational energy level structure built on it. The rotational part is exactly as in the previous section, but centrifugal distortion can be ignored. For one vibration (e.g. a diatomic), energies \(G(v)\) are expressed as:

\[
G(v) = (v + \frac{1}{2})\omega_e - (v + \frac{1}{2})^2\omega_e x_e + (\text{possible higher terms})
\]

A simple harmonic oscillator (SHO) has only the first term. \(\omega_e\) and \(\omega_e x_e\) are the frequency and anharmonicity for infinitesimal vibration amplitude at the bottom of the potential well.

Selection Rules:
1. For IR, the vibration must cause a change in dipole moment.
2. For Raman, the vibration must change the polarisability.
3. In centro-symmetric molecules, no vibration can be both IR and Raman active.
4. In both IR and Raman, \(\Delta v = \pm 1\) transitions are by far the strongest. This rule is not strict, because:
 a) a transition dipole can come from higher powers of the vibration coordinate extension, even for SHO.
 b) Anharmonicity removes the symmetry of the vibration wavefunctions. So \(\Delta v = \pm 2, \pm 3\ldots\) transitions are seen weakly.
5. The selection rules for rotational fine structure are \(\Delta J = \pm 1\) for IR and \(\Delta J = 0, \pm 2\) for Raman, if no other angular momentum is present. If another angular momentum is present then \(\Delta J = 0, \pm 1\) for IR and \(\Delta J = 0, \pm 1, \pm 2\) for Raman.

Line Positions:
For \(\Delta v = 1\), the vibrational origins (\(\Delta J = 0\)) are at \(\Delta G(v) = \omega_e - 2v\omega_e x_e\), where \(v\) is the quantum number of the upper state. Successive origins differ by \(2\omega_e x_e\).

IR rotational structure may have P,Q and R branches for \(\Delta J = -1,0,+1\) respectively. The B values are different in each vibrational level, written \(B_0, B_1, \text{ etc.}\). Because they are only slightly different, the P and R branches have a line spacing of about \(2B_{av}\), but there is a double-sized gap of about \(4B_{av}\) at the band origin. Lines close up in the R branch and spread out in P.

Remember that when observing different isotopes (e.g. HCl), the correct ratio (for this example it would be 3:1) is NOT seen, because transmittance is on a logarithmic scale.

The B values are smaller for higher vibration levels, because on average the bonds get extended:

\[
B_v = B_e - (v + \frac{1}{2})\alpha
\]

From B values in two levels \(\alpha\) can be found (\(B_1 - B_0 = \alpha\)). \(B_e\) is the (theoretical) rotational constant at the bottom of the potential well and gives the equilibrium bond length.

Formally, \(B_e = h/(8\pi^2\mu c)\) where \(I = \mu r_e^2\).
For Raman, with \(\Delta J = 0, \pm 2\), the structure is analogous.

Intensities:
For the rotational part, populations are as given in the last section. Vibrational energies are \(>kT\), so normally only \(v=0\) is strongly populated. The weak transitions starting from \(v=1\) etc. are called hot bands.
Vibrational Energy Levels

Energy of a molecular vibration depends on internuclear distance. Harmonic Oscillator + Quantum Mechanics gives:

\[E = (v + \frac{1}{2}) \hbar \nu \]

A real diatomic curve diverges at higher energies:

\[E \]

This is anharmonicity. Convergence of energy levels. This is described well by:

\[E = (v + \frac{1}{2}) \hbar \nu - (v + \frac{1}{2})^2 x_0 \nu + (v + \frac{1}{2})^3 y_0 \hbar \nu \]

\(x_0 \) – small anharmonicity correction term. Further terms are even smaller, usually neglected.

\[v = \frac{1}{2 \pi} \left(\frac{1}{\mu} \right)^{1/2} \]

Isotopically related molecules (e.g. \(\text{H}_2 \) and \(\text{D}_2 \)) have identical potential energy curves. Independent of mass. \(k \) is thus the same, so can predict energy level spacings. Spacing smaller for the heavier isotopes. Dissociation Energies are thus different \(\Rightarrow \) smaller ZPE for heavier atoms. \(\text{C-H} \) easier to break than \(\text{C-D} \).

Diatomics:

\[\omega_u = \frac{\omega_e}{\sqrt{2}} = (v + \frac{1}{2}) \omega_e - (v + \frac{1}{2})^2 \omega_e x_0 \]

\[\omega_e = \frac{1}{2 \pi c \nu} \text{ vib. freq at } \neq, \text{ in cm}^{-1} (\nu \text{ in kg}) \]

\[x_0 = \text{anharmonicity constant} \]

\[\text{ZPE } \Rightarrow \quad v = 0 \]

Harmonic Oscillator Potential:

\[V(R) = \frac{1}{2} k (R - R_e)^2. \]

Morse Potential:

\[V(R) = D \left[1 - e^{a(R-R_e)} \right]^2. \]

\[a = 2 \pi c \omega_a (\mu/2D_e)^{1/2}. \]

Dissociation Energy:

\[\frac{dG(v)}{dv} = 0 \text{ at } v = 0 \]

\[D_o = D_e - \text{ZPE} \]

Polyatomics:

Quanta in normal modes – \(A, B, C \ldots \) : \(v_A, v_B, v_C \ldots \)
Degeneracy \(d_A, d_B, d_C \ldots \)

Ignoring Anharmonicity:

\[C_u(v_n, v_s \ldots) = (v_n + \frac{d_A}{2}) \omega_a^2 + (v_s + \frac{d_B}{2}) \omega_b^3 + \ldots \quad / \text{cm}^{-1} \]

No simple relationship between bond force constants and vibrational frequencies of normal modes.
Vibration-Rotation Energy Levels

Diatomics:
\[F(v, J) = G(v) + F(J) \]

B varies with vibrational level as:
\[B_v = B_e - \alpha (v + \frac{1}{2}) \]
\[B_e = \frac{h}{8\pi^2 c \mu_{re}^2} \]

Symmetric Top Polyatomics –
\[F(v_A, v_B, \ldots; J; K) = G(v_A, v_B, \ldots) + F(J, K) \]
\[B_v = \frac{h}{8\pi^2 c \mu (\langle 1/r^2 \rangle_v)} \]

Variation due to:
- Anharmonicity
- Intrinsic property of \(\langle 1/r^2 \rangle \)

Infrared Spectroscopy – Vibration-Rotation

Diatomics –
Vibrational Changes:
\[
\chi_e(R) = \mu(R_e) + \frac{\partial \mu}{\partial R} \delta(R - R_e) + \frac{1}{2} \frac{\partial^2 \mu}{\partial R^2} \delta(R - R_e)^2 + \ldots
\]

Only first 2 terms =
\[
\int \chi_e(R) \mu(R) \chi_e(R) \, dR = 0
\]
\[
\int \chi_e(R) \mu(R) \chi_e(R) \, dR + \frac{\partial \mu}{\partial R} \int \chi_e(R) \delta(R - R_e) \, dR = 0 \quad \text{unless} \quad \chi_e = \chi_0 \]
Second Term ≠ 0 if \(\frac{\partial \mu}{\partial R} \neq 0 \)

For real molecules, anharmonicity \(\Delta v = \pm 2, \pm 3 \ldots \)
Allowed, but weak.
Also, dipole moment change ≠ 0, so heteronuclear only.

Populations –
\[N_v/N_0 = e^{G(v)hc/kT} \]
Hence for most diatomics, only see absorption from \(v = 0 \) (for room-temp).

Vibrational Transition Energies –
\[G(v+1) - G(v) = \omega_e - 2(v+1) \omega_e x_e \]
For \(v = 0 \), \(\omega_e - 2\omega_e x_e \approx \omega_0 \)
This \(\omega_0 \) is the Fundamental vibrational frequency.
First Overtone, \(G(2) - G(0) = 2\omega_e - 6\omega_e x_e \)
Note, \(D_e = \omega_e^2 / 4\omega_e x_e \)
Rotational Changes – \(\Delta J = \pm 1 \)
R-branch:
\[v^R(J) = F(v+1,J+1) - F(v,J) = v_0 + (B_0 + B_1)(J+1) + (B_1 - B_0)(J+1)^2 \]

P-branch:
\[v^P(J) = F(v+1,J-1) - F(v,J) = v_0 - (B_1 + B_0)J + (B_1 - B_0)J^2 \]

\[v(J+1) - v^P(J) = -(B_1 + B_0) + (B_1 - B_0)(2J+1) \]

Isotope Effects –
\[\omega_e \propto \frac{1}{\sqrt{\mu}} \]
\[\omega_b \propto \frac{1}{\mu} \]

Combination Differences –
In IR vib-rot spectra.

\[\dot{v}^R(J) - \dot{v}^R(J+2) = 4B_0(J+1)(J+\frac{3}{2})^{-3} \]
\[\approx 4B_0(J+\frac{3}{2}) \quad \text{(ignoring centrifugal)} \]

\[\dot{v}^P(J) - \dot{v}^P(J+2) = 4B_1(J+1)(J+\frac{1}{2})^{-3} \]
\[\approx 4B_1(J+\frac{1}{2}) \quad \text{(ignoring centrifugal)} \]

Normal Modes in polyatomic molecules. Combined motion of several atoms.
Bond vibrations not independent.

What are Normal Modes?
The vibratory motions in a polyatomic molecule can be analysed as a sum of “normal modes”, component vibrations in which all atoms move at the same frequency with sinusoidal displacements.

Normal modes are SHO, independent, and orthogonal – model valid for low quantum numbers only.

N – number of atoms:

- Linear –
 \[3N - 5 \text{ normal modes of vibration.} \]
e.g. \(CO_2 \):

\[
\begin{align*}
\text{IR active} & \quad \text{IR inactive} \\
v_1 & \quad v_2 \\
\text{O-C=O} & \quad \text{O-C=O} \\
\text{Stretch} & \quad \text{Bend} \\
G(v_1, v_2, v_3) &= (v_1 + \frac{1}{2})\omega_1 + (v_2 + \frac{1}{2})\omega_2 + (v_3 + \frac{1}{2})\omega_3 \\
&= \text{(ignoring anharmonicity)}
\end{align*}
\]

Infrared Selection Rules –
Dipole moment must change on vibration.
\(\Delta J = \pm 1 \) for parallel vibrations (change parallel to linear molecule xis).
\(\Delta J = 0, \pm 1 \) for perpendicular vibrations (change perpendicular to axis – bending).
Q-branch –
\[G(v_2=1, J) - G(v_2=0, J) = (B_1-B_0)J(J+1) + v_0. \]

\(B_1 - B_0 \) small – transitions pile up.
Transition allowed because of double degeneracy.

Symmetry of Rotational Wavefunction – parity
Designate levels wrt space-fixed inversion.

\[+ \leftrightarrow - \quad \text{allowed} \]
\[+ \leftrightarrow + / - \leftrightarrow - \quad \text{disallowed} \]

Overtone and Combination Bands (Linear)
Overtone – change of vibrational quantum number by > 1 in one mode.
Combination Band – excitation of 2 different vibrational modes simultaneously.
Example, CO_2

Selection Rules for Overtones and Combinations:
\(v_1 \) – g symmetry.
\(v_2 \) – u for odd quanta, g for even.
\(v_3 \) – u for odd, g for even.
\((0,0,0) \) – g.
Selection Rule – g ↔ u.

Vibrational Spectroscopy of Non-Linear Polyatomics
3N – 6 normal modes of vibration.
Characterise by irreducible representations of the molecular symmetry group, e.g.

\[(a_1, a_1, a_1) \rightarrow (a_1, 5, 5) \]
\[(a_2, a_2, a_2) \rightarrow (a_1, 5, 5) \]
\[(a_3, a_1, 0) \rightarrow (5, 5, 5) \]
\[(a_3, 0, 0) \rightarrow (5, 5, 0) \]
\[(0, a_3, 0) \rightarrow (5, 5, 0) \]

Those displayed above \(\rightarrow \) no dipole change. IR inactive.

Vibrational Selection Rules:
\[\langle \psi_i | \mu | \psi_f \rangle \] - totally symmetric.
\(\rightarrow \) must contain \(A_1 \) for allowed transition.
\(\Gamma_{y} \) - transforms as x, y, z.
\(\Gamma_{y'} \) - normally totally symmetric for Ground Level (\(a_{1g} \)).
\(\Gamma_{y'} \) - must transform as x, y or z.
For \(D_{4h} \), \(a_{2u} \) and \(e_u \) modes active (those with x, y, z in character table).

Rotational Structure in IR Spectra of Polyatomics – Symmetric Top

Selection Rules:
Parallel (allowed by z) –
\[\Delta K = 0 \]
\[\Delta J = \pm 1 \] for \(K = 0 \), \(\Delta J = 0, \pm 1 \) for \(K \neq 0 \)
Perpendicular (allowed by x, y) –
\[\Delta K = \pm 1 \quad \Delta J = 0, \pm 1 \]

Overtones and Combination Bands (Polyatomics)
Consider direct product for excited modes. Overtone allowed if product transforms as x, y, z.
e.g. $D_{4h} - b_{1g} \times b_{2u} = a_{2u}$ (allowed).

Hot Bands
Intensity of transitions from vibrationally excited states increases as T increases.

Group Frequencies
Bond vibrations strongly coupled if similar intrinsic frequencies. Some bonds almost completely
decoupled \Rightarrow Group Frequency.

Tunnelling and Inversion
When more than one minimum in PE surface \Rightarrow overlap of vibrational wavefunctions possible \Rightarrow
tunnelling, e.g. NH_3:

\[\pm \text{linear combinations have slightly different energies.} \]
Overlap increases nearer top of the well, hence tunnelling splitting increases.
Tunnelling Splitting Frequency = rate constant for inversion.

Small splittings in other bands also observed due to anharmonic effects, e.g. excitation of other v_i
stretching mode causes slight change in bonding potential \Rightarrow different tunnelling frequency.

Broadening in Spectra
a) Lifetime broadening – “natural linewidth”.
b) Pressure broadening (collisions)
c) Doppler Effect (effective frequency observed by molecule)
d) Power (saturation) broadening.
e) Unresolved underlying structure.
f) Instrumental resolution.

Lifetime Broadening – if the probability of a system existing in a particular state decays as:
\[|\psi|^2 \approx |\psi|^2 e^{-t/\tau} \]
This gives rise to an energy uncertainty.
\[\tau \delta E \approx \hbar. \]
δE is the full width at half maximum height.
\[\tau \delta v = 1/2\pi c \]

Raman Spectroscopy
Monochromatic light, wavenumber v_o (visible).
Measure spectrum of scattered light.
Raman Effect. Inelastic Scattering:
- \(v' > v_L \) – Anti-Stokes
- \(v' < v_L \) – Stokes
Conservation of Energy: \(h v' - h v_L = \Delta E \).

Quantum Picture of Raman

The “absorption” and “emission” are instantaneous and simultaneous – no transfer of population. “virtual” state – off-resonant, transient, polarisation induced.

Both pure rotational and vib-rot changes are observed:

Classical description of Raman
Molecule rotating at frequency \(\omega' \) – polarisability oscillates with frequency \(2\omega' \) → oscillating dipole radiates.

Gross Selection Rules for Raman:
Rotational – molecule must have anisotropic polarisability.

\[\Delta J = 0, \pm 2 \] (rotational and vibrational)

Rotational –
\[\Delta J = 0 \] (Rayleigh)
\[\Delta J = \pm 2 \] Stokes / Anti-Stokes

\[F(J+2) - F(J) = B[(J+2)(J+3) - J(J+1)] = (4J+6)B \]

So Stokes lines at \(v_L - (4J+6)B \)
\[J = 0, 1, ... \]

\[F(J-2) - F(J) = (4J-2)B \]

So Anti-Stokes lines at \(v_L + (4J-2)B \)
\[J = 2, 3, ... \]

Resolution is not normally sufficiently high to include centrifugal distortion.

Vibrational – polarisability change on vibration.

Selection Rules –
\[\Delta v = 1, \Delta J = 0 \]

Rotational Structure –
Q-branch: \(\Delta v = 1, \Delta J = 0 \)

\[F(v=1,J) - F(v=0,J) \]
\[= v_0 + \left(B_1 - B_0 \right) J(J+1) \approx v_0 \] [displacement from \(v_L \)]
\[= \omega_o - 2\omega_x \]
S-branch: \(\Delta v = 1, \Delta J = +2 \)

\[
F(v=1, J+2) - F(v=0, J) = v_0 + B_1(J+2)(J+3) - B_0(J+1) = v_0 + (B_1+B_0)(2J+3) + (B_1-B_0)(J^2 + 3J + 3)
\]

O-branch: \(\Delta v = 1, \Delta J = -2 \)

\[
F(v=1, J-2) - F(v=0, J) = v_0 + B_1(J-1)(J-2) - B_0(J+1) = v_0 - (B_1+B_0)(2J-1) + (B_1-B_0)(J^2 - J + 1)
\]

Rule of Mutual Exclusion – Polyatomic

For molecules with centre of inversion symmetry (i): IR active modes are Raman inactive and vice versa. There may be some modes that are inactive in both.

Transition Intensities and Group Theory

Raman effect arises from interaction of the induced dipole moment of the molecule with the EM field.

For a diatomic in an E-field \(\varepsilon \) polarised in the z-direction, the component of the induced dipole in that direction:

\[
\mu_z = \alpha_x \varepsilon \sin^2 \Theta + \alpha_y \varepsilon \cos^2 \Theta
\]

2 parts of \(\mu_z \) transform in \(D_{\infty h} \) group in the same way as \(x^2 + y^2 \) and \(z^2 \) (\(A_{1g} \)).

Transition Moment (Raman) is of the form:

\[
<v'J' | \mu_z | v''J'' >
\]

For non-zero transition probability require:

- \(\Gamma_{v'} \), \(\Gamma_{\mu_z} \), \(\Gamma_{v''} \) transforms to \(A_{1g} \) (totally symmetric)

\(x^2, y^2, xy \) etc \(\rightarrow g \)

\(x, y, z \rightarrow u \)

(Hence mutual exclusion principle above).

Effects of Nuclear Spin Statistics

Pauli Principle:

- \(\Psi_{v''} \) is antisymmetric when exchange of equivalent **FERMIONS**
- \(\Psi_{v''} \) is symmetric when exchange of equivalent **BOSONS**

\[
\Psi = \Psi_{v''} \Psi_{v''} \Psi_{v''} \Psi_{v''} \Psi_{v''}
\]

- \(\Psi_{v''} \) is always

- \(\Psi_{v''} \) is usually \(\square \), but e.g. \(\text{CO}_2 \) (\(\square \))
- \(\Psi_{v''} \) is always \(\square \) in vib ground state
- \(\Psi_{v''} \) is always \(\square \) in diatomic
- \(\Psi_{v''} \) in polyatomic, may be \(\square \) for odd \# of \(\text{nuc}\)
- \(\text{e.g.: CO}_2 \) \((v_i,v_i,v_i) \)
\[(0,0,0) \; (1,0,0) ; (0,0,1) \]

- \(\Psi_{v''} \) is symmetric for even \(J \)
- \(\Psi_{v''} \) is antisymmetric for odd \(J \)

Can thus stipulate \(\Psi_{\text{nuc}} \).
These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission.

www.alchemyst.f2o.org

Applications to Diatomics (homonuclear) and Linear Molecules

\[\frac{1}{2} \left[\alpha(1) \beta(2) + \alpha(2) \beta(1) \right] \]

\[\frac{1}{2} \left[\alpha(1) \beta(2) - \alpha(2) \beta(1) \right] \]

\[\psi_{\text{nuc}} = \text{symmetric} \]

For rotational Raman:

\[\psi_{\text{rot}} = \text{only} \]

For infrared: for (0,0,1).

\[\psi_{\text{vib}} = \text{only} \]

\[\psi_{\text{rot}} = \text{only} \]

Only odd J levels exist. Raman: 1 \rightarrow 3, 3 \rightarrow 5, ...