ROTATIONAL SPECTROSCOPY

SUMMARY:

Linear molecules: $\mathrm{E}(\mathrm{J})=\mathrm{BJ}(\mathrm{J}+1)-\mathrm{DJ}^{2}(\mathrm{~J}+1)^{2}$
The centrifugal term is needed only for high precision.
Symmetric Tops - E(J,K) = BJ $(\mathrm{J}+1)+(\mathrm{A}-\mathrm{B}) \mathrm{K}^{2}$
K is the angular momentum quantum number for rotation about the symmetry axis.
Molecules include e.g. $\mathrm{CH}_{3} \mathrm{Cl}$, benzene.

Selection Rules:

For microwave and far IR spectra:

1. the molecule must have a permanent dipole moment.
2. $\Delta \mathrm{J}= \pm 1$ (+1 in absorption).

For rotational Raman spectra:

1. the molecule must have anisotropic polarisability (this is all molecules except spherical).
2. $\Delta \mathrm{J}= \pm 2$ ($\Delta \mathrm{J}=0$ is the Rayleigh line).

But in Raman spectra of symmetric tops when $\Delta K \neq 0, \Delta J= \pm 1, \pm 2, \Delta K=0$.

Line positions in microwave and far IR -

Combining the energy levels and IR or microwave selection rule for linear molecules in the line position v is: v (same units as B and D$)=2 \mathrm{~B}(\mathrm{~J}+1)-4 \mathrm{D}(\mathrm{J}+1)^{3}$
This comes from: $\mathrm{v}_{\mathrm{J}}=\mathrm{F}(\mathrm{J}+1)-\mathrm{F}(\mathrm{J})=\mathrm{B}_{0}[(\mathrm{~J}+1)(\mathrm{J}+2)-\mathrm{J}(\mathrm{J}+1)]-\mathrm{D}_{0}\left[(\mathrm{~J}+1)^{2}(\mathrm{~J}+2)^{2}-\mathrm{J}^{2}(\mathrm{~J}+1)^{2}\right]$
Adjacent lines are separated by approximately 2B.
D represents the centrifugal distortion, as bond length increases as rotational energy increases. Thus, the effective value of B decreases with J (proportional to $1 /\left\langle r^{2}\right\rangle$).

To analyse a microwave or far IR rotation spectrum, use the line spacing to get a rough value of B. Then use B to find the J values for each line. Finally use the full formula for line positions to get precise B and D values by plotting a graph of $\mathrm{v} /(\mathrm{J}+1)$ against $(\mathrm{J}+1)^{2}$, where intercept $=2 \mathrm{~B}$, slope $=$ -4D.

Note though that for the equilibrium bond length to be calculated, extrapolation is required (i.e. B_{e} does not equal B_{0}, B_{1}, etc). The more data that can be obtained, the more accurate the extrapolation will be.

Line positions in Rotational Raman Spectra -

Displacement from the Rayleigh line Δv is $2 B(2 J+3)$. Line spacing is $4 B$. The line positions are never so precise as to need a centrifugal term.

Level populations and line intensities -

The number of molecules in energy level E_{j} is:

$$
N_{j}=N_{0} g_{j} \exp \left(-E_{j} / k_{B} T\right) \text {, where } g_{j} \text { is the degeneracy. }
$$

Line intensities are proportional to N_{j}. In the simplest case (unsymmetrical diatomic or linear molecule), the degeneracy is $(2 J+1)$. By differentiating you can show that in this case maximum population is at $\mathrm{J}_{\max }$ given by:

$$
J_{\text {max }}=\left(k_{B} T / 2 B\right)^{1 / 2}-1 / 2
$$

This comes from differentiating N_{J} by J. ($k_{B} T$ and B must be in the same units! $-\mathrm{cm}^{-1}$ or Joules)

In spectra of symmetrical linear molecules nuclear spin must be included in the degeneracy - there is alternation of intensity if the nuclear spin of equivalent nuclei is non-zero ($\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}$ etc). If the nuclear spin is zero, half the lines are missing and the line spacing is 4 or 8 B (e.g. $\mathrm{O}_{2}, \mathrm{CO}_{2}$). For nuclear spin I , intensity ratio approaches $(\mathrm{l}+1) / \mathrm{l}$ at high J .

Energy Levels

$$
\begin{gathered}
\mathbf{E}_{\mathbf{J}}=\mathbf{B J}(\mathbf{J}+\mathbf{1}) \\
B=h^{2} / 8 \pi^{2} \mu r^{2}
\end{gathered}
$$

Considering centrifugal distortion (bond stretches) -

$$
E_{J}=B J(J+1)-D J^{2}(J+1)^{2}
$$

Diatomic -
m_{1} and m_{2} point masses.
Rigid rotor length r .
$I=m_{1}\left(Z_{1}-z\right)^{2}+m_{2}\left(z_{2}-z\right)^{2}$, i.e.

$$
\begin{aligned}
E_{\text {rot }} & =1 / 2 l \omega^{2} \\
I & =\mu r^{2}
\end{aligned}
$$

$E_{\text {rot }}=1 / 2\left(p^{2} / I\right), p=I \omega$
Hence,

$$
\mathrm{H}_{\mathrm{rot}}=\left(\frac{h^{2}}{2 I}\right) J^{2}
$$

Find eigenfunctions and values.
$\rightarrow \mathrm{J}^{2} \psi$ лм $=\mathrm{J}(\mathrm{J}+1) \Psi \mathrm{\jmath м}$
Therefore,

$$
E_{\mathrm{rot}}=\left(\frac{h^{2}}{2 I}\right) J(J+1), J=0,1,2 \ldots
$$

Implies:

$B=h^{2} / 21$, rotational constant (Joules).
$\mathrm{B}=\mathrm{h}^{2} / 2 \mathrm{hl}(\mathrm{Hz})$
$\mathrm{B}=\mathrm{h}^{2} / 2 \mathrm{hcl}\left(\mathrm{cm}^{-1}\right)$
$\psi_{\mathrm{J} M}$ - spherical harmonics. Rotational coordinates θ, ϕ. Quantum numbers J and $M \rightarrow J_{z} \psi=M_{J} \psi$, $M_{J}=-J . . .+J$

Note that $\mathrm{E}=\mathrm{BJ}(\mathrm{J}+1)$ implies independent of M_{J} (in the absence of external electric / magnetic fields).

Each rotational level J is $(2 \mathrm{~J}+1)$ fold degenerate.
Note also parity labels on J:
J odd \rightarrow negative
J even \rightarrow positive

Selection Rules -

$\Delta \mathrm{J}=0, \pm 1$
$\Delta \Lambda=0$
parity + ↔-

All imply: must possess electric dipole moment(heteronuclear)
$\Delta \mathrm{J}=+1$ most relevant to closed shell diatomic, as ${ }^{1} \Sigma^{+}$is a given (parity).

Allowed transitions for $E=B J(J+1)$ are thus:

$$
\mathrm{hv}=\mathrm{B}[\mathrm{~J}(\mathrm{~J}+1)(\mathrm{J}+2)-\mathrm{J}(\mathrm{~J}+1)]=2 \mathrm{~B}(\mathrm{~J}+1)
$$

Spectrum consists of equally spaced lines starting as $v=2 B / h$ and separated by $2 B / h$.
Rotational transitions occur from microwave up to far-infrared.

Populations:

$$
\left(N^{\prime \prime}-N^{\prime}\right)=N^{\prime \prime}\left(1-e^{-h v / k T}\right)
$$

$h v \ll k T$ (for rotational region), therefore population of upper M state involved in the transition is not negligible compared with lower. Absorption intensity is a measure of population difference. Expand,
$\begin{array}{ll}\left(N^{\prime \prime}-N^{\prime}\right)=N^{\prime \prime}(1-1+h v / k T-\ldots) & - \\ N^{\prime \prime}=N_{o} e^{-B J}\left(J_{+1}\right) / k T & \text { linear with } v . \\ \text { in terms of } J=0 \text { level. }\end{array}$

Centrifugal Distortion

Not exactly 2B/h spacing, but get slightly closer as increase J.
This is because bond is not infinitely stiff. Faster rotation \rightarrow masses move apart, I increase and B decreases. Use Hooke's Law, $F=-k\left(r-r_{e}\right)=-\mu r \omega^{2}$
Stretching bond contributes to rotational energy as Kinetic and Potential. Summing these for total centrifugal contribution:

$$
E_{c d}=-\frac{1}{2} \frac{\rho^{4}}{I_{e}^{3} k} \Rightarrow-\frac{1}{2}\left[\frac{h^{4}}{I_{e}^{3}\left(\frac{k}{P}\right)}\right] J^{2}(J+1)^{2}
$$

Hence,

$$
\mathbf{E}_{\text {rot }}=\mathbf{B J}(\mathbf{J}+\mathbf{1})-\mathbf{D J}^{2}(\mathbf{J}+\mathbf{1})^{2}, \text { where } \mathbf{D}=1 / 2 h^{4} / I_{e}^{3}\left(\frac{k}{\mu}\right)
$$

Hence, a $\mathrm{J}+1 \leftarrow \mathrm{~J}$ transition has frequency $\mathrm{v}=2 \mathrm{~B}(\mathrm{~J}+1)-4 \mathrm{D}(\mathrm{J}+1)^{3}$
$\mathrm{v} /(\mathrm{J}+1)=2 \mathrm{~B}-4 \mathrm{D}(\mathrm{J}+1)^{2}$

- plot $\mathrm{v} /(\mathrm{J}+1)$ against $(\mathrm{J}+1)^{2}$ gives intercept 2B and slope -4D.

Determining Bond Lengths -

Can relate B to I and so obtain r.
Note though that there is a weak vibrational dependence as:

$$
B_{v}=B_{e}-\alpha_{e}(v+1 / 2)+\ldots
$$

where α_{e} is a vibrational coefficient (harmonic and anharmonic contributions).
B_{v} gets slightly smaller as v increases.

$$
\begin{gathered}
\mathrm{B}_{\mathrm{e}} \propto \mu^{-1} \\
\alpha_{\mathrm{e}} \propto \mu^{-3 / 2}
\end{gathered}
$$

Simplest way is to measure B_{0} and D_{o} for diatomic in its zero point level. B_{0} gives r_{0}, and r_{0} is averaged over the $v=0$ wavefunction.
More accurate - measure several vibrational levels and extrapolate back to B_{e} (equilibrium rotational constant), which gives r_{e}.

Stark Effect -

The effect of an external electric field on the spectrum.
$\mathbf{W}_{\text {stark }}=-\mu$. $\mathbf{E} \quad$ negative as energy lowest when dipole and E-field parallel]
Difference to electric dipole transition is that apply a static, time-independent field.
When field is large, there is extensive mixing and J-values cannot be assigned.
J and parity no longer good quantum numbers.
M remains good. E-field causes the molecule to rotate "cock-eyed" about the field direction rather than having rotational angular momentum vector point in a fixed direction.
There are $1^{\text {st }}$ order and $2^{\text {nd }}$ order Stark effects. $1^{\text {st }}$ order is very rare - requires vibration/electronic degeneracy in rotational energy levels. One diatomic example is NO (${ }^{2} \Pi$ electronic ground state). $2^{\text {nd }}$ order \rightarrow closed-shell electronic and rotational level has only ($2 \mathrm{~J}+1$) degeneracy.

Summary:

$$
F(J)=E_{J} / h c=B J(J+1)-D J^{2}(J+1)^{2}, J=0,1,2 \ldots
$$

B - rotational constant $=\mathrm{h} / 8 \pi^{2} \mathrm{Ic}$
(cm ${ }^{-1}$)
$\mathrm{I}-$ moment of inertia $=\mu \mathrm{R}^{2}$
R - internuclear distance
μ - reduced mass
$D-$ centrifugal distortion constant $=4 \mathrm{~B}^{3} \mathrm{c}^{2} / \mathrm{v}^{2} \quad\left(\mathrm{~cm}^{-1}\right)$
v - vibrational frequency $=(1 / 2 \pi)(\mathrm{k} / \mu)^{1 / 2}$
Degeneracy $2 \mathrm{~J}+1$
$\mathrm{N}_{\mathrm{J}}=\mathrm{N}_{\mathrm{o}}(2 \mathrm{~J}+1) \exp (-\mathrm{BhcJ}(\mathrm{J}+1) / \mathrm{kT})$
($\mathrm{N}_{\mathrm{J}}=$ number in level J)
Maximum population: $\mathrm{dN} / \mathrm{dJ}=0 \rightarrow \mathrm{~J}_{\max }=(\mathrm{kT} / 2 \mathrm{hcB})^{1 / 2}-1 / 2$

Isotope Effects in Linear Polyatomics -

Spectra for polyatomics same form as diatomics.
B depends on more than one bond length.

$$
\mathrm{I}=\sum_{i} m_{i} r_{i}^{2} \text { for a linear polyatomic. }
$$

r_{i} - distance to centre of mass.

$$
\begin{array}{ll}
\text { distance to Centre of Mass } m_{0} m_{1} \\
m_{0}\left(r_{c 0}\right)+m_{0} r=m_{s}\left(r_{c s}-r\right) & O \xrightarrow[r_{c o}]{r_{s}} \\
\Rightarrow r=\frac{m_{s} r_{s}-m_{0} r_{c o}}{m} & 0=c
\end{array}
$$

Parallel Axis Theorem:

$$
\begin{aligned}
I_{C O M} & =I_{c}-m_{r^{2}}^{2} \\
& =m_{0} r_{C O}^{2}+m_{S} r_{c s}^{2}-\left(\frac{m_{s} r_{c s}-m_{0} r_{c}}{m}\right)^{2}
\end{aligned}
$$

Determine $r_{c o}, r_{c s}$ by isotopic substitution.

Polyatomic Non-Linear Molecules -

Define axes through Centre of Mass, such that one axis has largest possible I and one perpendicular has the smallest.
CH_{3} I:

e.g. $\mathrm{I}_{\mathrm{a}}=\sum_{i} m_{i} r_{i, a}{ }^{2}$
c axis has largest I , while a axis has smallest.

$$
E=\frac{J_{a}{ }^{2}}{2 I_{a}}+\frac{J_{b}{ }^{2}}{2 I_{b}}+\frac{J_{c}{ }^{2}}{2 I_{c}}
$$

Spherical Top -
e.g. SF_{6}.

Quantum: $\left\langle J^{2}\right\rangle=J(J+1) h^{2}$

$$
\begin{gathered}
\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{b}}=\mathrm{i}_{\mathrm{c}}, \mathrm{E}=\mathrm{J}^{2} / 2 \mathrm{I} . \\
\mathrm{E}=\mathrm{hcBJ}(\mathrm{~J}+1)
\end{gathered}
$$

($\left.B=h / 8 \pi^{2} l c\right)$

Symmetric Top -
Any molecule with at least one n-fold axis of rotation.
e.g. NH_{3}, benzene ($\mathrm{n} \geq 3$).

PROLATE: $\quad I_{b}=I_{c}>I_{a}\left(\mathrm{CH}_{3} \mathrm{~F}\right)$
OBLATE: $\quad I_{c}>I_{a}=I_{b}$ (benzene)
Prolate,

$$
\begin{aligned}
& E=\frac{J_{a}{ }^{2}}{2 I_{a}}+\frac{J_{b}{ }^{2}+J_{c}{ }^{2}}{2 I_{b}} \\
& E=\frac{J_{a}{ }^{2}}{2 I_{a}}+\frac{J^{2}-J_{a}{ }^{2}}{2 I_{b}}
\end{aligned}
$$

J_{a} is component of angular momentum along the molecule-fixed a axis.
By analogy,

$$
<J_{a}>=K h .
$$

K is a projection quantum number along a axis. $K=0, \pm 1, \ldots \pm J$.

Oblate, same but:

$$
\rightarrow E=\frac{h^{2}}{2 I_{b}} J(J+1)+\left(\frac{h^{2}}{2 I_{a}}-\frac{h^{2}}{2 I_{b}}\right) K^{2}
$$

$$
F(J, K)=B J(J+1)+(A-B) K^{2}
$$

[$\mathrm{A}>\mathrm{B}$]

$$
F(J, K)=B J(J+1)+(C-B) K^{2}
$$

[C < B]
If $K=J-$ rotational motion is primarily about the top axis.

Selection Rules:

$\Delta \mathrm{J}= \pm 1, \Delta \mathrm{~K}=0$ (dipole unchanged through rotation about symmetry axis).
$F(J+1, K)-F(J, K)=v=2 B(J+1)$
Taking into account centrifugal distortion,
$F(J, K)=B J(J+1)+(A-B) K^{2}-D_{J} J^{2}(J+1)^{2}-D_{J K} J(J+1) K^{2}-D_{K} K^{4}$
$V=2 B(J+1)-4 D_{J}(J+1)^{3}-2 D_{J K}(J+1) K^{2}$
Stark Effect - lifts M degeneracy -
M_{J} space-fixed projection quantum number.

$$
\mathrm{F}\left(\mathrm{~J}, \mathrm{~K}, \mathrm{M}_{\mathrm{J}}\right)=\mathrm{BJ}(\mathrm{~J}+1)+(\mathrm{A}-\mathrm{B}) \mathrm{K}^{2}+\frac{\mu \varepsilon K M_{J}}{J(J+1) h c}
$$

E-fiedd splits each

Parallel polarisation: $\Delta A_{j}=0$ PERPENDICULAR POLARISATION: $\Delta M_{J}= \pm 1$

Asymmetric Tops -

$\mathrm{I}_{\mathrm{a}} \neq \mathrm{I}_{\mathrm{b}} \neq \mathrm{I}_{\mathrm{c}}$.

