ROTATIONAL SPECTROSCOPY

SUMMARY:

Linear molecules: $E(J) = BJ(J+1) - DJ^2(J+1)^2$ The centrifugal term is needed only for high precision. Symmetric Tops – $E(J,K) = BJ(J+1) + (A-B)K^2$ K is the angular momentum quantum number for rotation about the symmetry axis. Molecules include e.g. CH_3CI , benzene.

Selection Rules:

For microwave and far IR spectra:

- 1. the molecule must have a permanent dipole moment.
- 2. $\Delta J = \pm 1$ (+1 in absorption).

For rotational Raman spectra:

- 1. the molecule must have anisotropic polarisability (this is all molecules except spherical).
- 2. $\Delta J = \pm 2$ ($\Delta J = 0$ is the Rayleigh line).

But in Raman spectra of symmetric tops when $\Delta K \neq 0$, $\Delta J = \pm 1, \pm 2, \Delta K = 0$.

Line positions in microwave and far IR -

Combining the energy levels and IR or microwave selection rule for linear molecules in the line position v is: v (same units as B and D) = $2B(J+1) - 4D(J+1)^3$

This comes from: $v_J = F(J+1) - F(J) = B_0[(J+1)(J+2) - J(J+1)] - D_0[(J+1)^2(J+2)^2 - J^2(J+1)^2]$ Adjacent lines are separated by approximately 2B.

D represents the centrifugal distortion, as bond length increases as rotational energy increases. Thus, the effective value of B decreases with J (proportional to $1/\langle r^2 \rangle$).

To analyse a microwave or far IR rotation spectrum, use the line spacing to get a rough value of B. Then use B to find the J values for each line. Finally use the full formula for line positions to get precise B and D values by plotting a graph of v/(J+1) against $(J+1)^2$, where intercept = 2B, slope = -4D.

Note though that for the equilibrium bond length to be calculated, extrapolation is required (i.e. B_e does not equal B_0 , B_1 , etc). The more data that can be obtained, the more accurate the extrapolation will be.

Line positions in Rotational Raman Spectra –

Displacement from the Rayleigh line Δv is 2B(2J+3). Line spacing is 4B. The line positions are never so precise as to need a centrifugal term.

Level populations and line intensities –

The number of molecules in energy level E_j is:

 $N_i = N_0 g_i \exp(-E_i/k_BT)$, where g_i is the degeneracy.

Line intensities are proportional to N_j . In the simplest case (unsymmetrical diatomic or linear molecule), the degeneracy is (2J+1). By differentiating you can show that in this case maximum population is at J_{max} given by:

$$J_{max} = (k_B T/2B)^{1/2} - \frac{1}{2}$$

This comes from differentiating N_J by J. (k_BT and B must be in the same units! - cm⁻¹ or Joules)

In spectra of symmetrical linear molecules nuclear spin must be included in the degeneracy – there is alternation of intensity if the nuclear spin of equivalent nuclei is non-zero (H₂, N₂, F₂ etc). If the nuclear spin is zero, half the lines are missing and the line spacing is 4 or 8B (e.g. O_2 , CO_2). For nuclear spin I, intensity ratio approaches (I+1)/I at high J.

Energy Levels

$$\mathbf{E}_{J} = \mathbf{B}J(J+1)$$
$$B = \frac{h^{2}}{8\pi^{2}\mu r^{2}}$$

Considering centrifugal distortion (bond stretches) – $E_J = BJ(J+1) - DJ^2(J+1)^2$

Diatomic –

 m_1 and m_2 point masses. Rigid rotor length r.

$$I = m_1(z_1-z)^2 + m_2(z_2-z)^2$$
, i.e.

 $E_{rot} = \frac{1}{2} (p^2/I), p = I_{\omega}$ Hence,

$$\mathsf{H}_{\mathsf{rot}} = \left(\frac{\hbar^2}{2I}\right) J^2$$

 $E_{rot} = \frac{1}{2} I \omega^2$

 $I = \mu r^2$

Find eigenfunctions and values.

→ $J^2 \psi_{JM} = J(J+1)\psi_{JM}$ Therefore,

$$E_{rot} = \left(\frac{h^2}{2I}\right) J(J+1), J = 0,1,2...$$

Implies:

$$(J^{2} dependence)$$

$$(\frac{1}{T} dependence)$$

B = $h^2/2I$, rotational constant (Joules). B = $h^2/2hI$ (Hz) B = $h^2/2hcI$ (cm⁻¹)

 ψ_{JM} – spherical harmonics. Rotational coordinates θ , ϕ . Quantum numbers J and M \rightarrow J_z ψ = M_J ψ , M_J = -J ...+J

Note that E = BJ(J+1) implies independent of M_J (in the absence of external electric / magnetic fields).

Each rotational level J is (2J+1) fold degenerate.

Note also parity labels on J: J odd \rightarrow negative J even \rightarrow positive

Selection Rules -

 $\Delta J = 0, \pm 1$ $\Delta \Lambda = 0$ parity + \leftrightarrow -

All imply: must possess electric dipole moment(heteronuclear)

 $\Delta J = +1$ most relevant to closed shell diatomic, as ${}^{1}\Sigma^{+}$ is a given (parity).

Allowed transitions for E = BJ(J+1) are thus:

hv = B [J(J+1)(J+2) - J(J+1)] = 2B(J+1)

Spectrum consists of equally spaced lines starting as v = 2B/h and separated by 2B/h. Rotational transitions occur from microwave up to far-infrared.

Populations:

$$(N'' - N') = N''(1 - e^{-hv/kT})$$

hv << kT (for rotational region), therefore population of upper M state involved in the transition is not negligible compared with lower. Absorption intensity is a measure of population difference. Expand,

(N''-N') = N''(1-1+hv/kT - ...) - linear with v. N'' = N_o e^{-BJ(J+1)/kT} in terms of J = 0 level.

Centrifugal Distortion

Not exactly 2B/h spacing, but get slightly closer as increase J.

This is because bond is not infinitely stiff. Faster rotation \rightarrow masses move apart, I increase and B decreases. Use Hooke's Law, F = -k(r-r_e) = - μ r ω ²

Stretching bond contributes to rotational energy as Kinetic and Potential. Summing these for total centrifugal contribution:

$$E_{cd} = -\frac{1}{2} \frac{P^{4}}{T_{a}^{3} k} = -\frac{1}{2} \left[\frac{h^{4}}{T_{a}^{3} (\xi)} \right] J^{2} (J+1)^{2}$$

Hence,

$$E_{rot} = BJ(J+1) - DJ^2(J+1)^2$$
, where $D = \frac{\frac{1}{2}h^4}{I_e^3(\frac{k}{\mu})^2}$

Hence, a J+1 \leftarrow J transition has frequency v = 2B(J+1) – 4D(J+1)³ v/(J+1) = 2B – 4D(J+1)²

- plot v/(J+1) against $(J+1)^2$ gives intercept 2B and slope -4D.

Determining Bond Lengths -

Can relate B to I and so obtain r.

Note though that there is a weak vibrational dependence as:

$$B_v = B_e - \alpha_e (v + \frac{1}{2}) + \dots$$

where α_e is a vibrational coefficient (harmonic and anharmonic contributions). B_v gets slightly smaller as v increases.

$$\begin{array}{l} \mathsf{B}_{\mathsf{e}} \propto \mu^{-1} \\ \mathfrak{A}_{\mathsf{e}} \propto \mu^{-3/2} \end{array}$$

Simplest way is to measure B_o and D_o for diatomic in its zero point level. B_o gives r_o , and r_o is averaged over the v = 0 wavefunction.

More accurate – measure several vibrational levels and extrapolate back to B_e (equilibrium rotational constant), which gives r_e .

Stark Effect -

The effect of an external electric field on the spectrum.

 $W_{\text{stark}} = -\mu E$ [negative as energy lowest when dipole and E-field parallel] Difference to electric dipole transition is that apply a static, time-independent field.

When field is large, there is extensive mixing and J-values cannot be assigned.

J and parity no longer good quantum numbers.

M remains good. E-field causes the molecule to rotate "cock-eyed" about the field direction rather than having rotational angular momentum vector point in a fixed direction.

There are 1^{st} order and 2^{nd} order Stark effects. 1^{st} order is very rare – requires vibration/electronic degeneracy in rotational energy levels. One diatomic example is NO ($^{2}\Pi$ electronic ground state). 2^{nd} order \rightarrow closed-shell electronic and rotational level has only (2J+1) degeneracy.

Summary:

 $\begin{array}{ll} B - \text{rotational constant} = h/8\pi^2\text{lc} & (\text{cm}^{-1}) \\ I - \text{moment of inertia} = \mu\text{R}^2 & (\text{kg m}^2) \\ R - \text{internuclear distance} & (m) \\ \mu - \text{reduced mass} & (\text{kg}) \\ D - \text{centrifugal distortion constant} = 4B^3\text{c}^2/\text{v}^2 & (\text{cm}^{-1}) \\ \text{v} - \text{vibrational frequency} = (1/2\pi)(\text{k}/\mu)^{1/2} & (\text{Hz}) \end{array}$

Degeneracy 2J+1

 $N_J = N_o(2J+1) \exp (-BhcJ(J+1)/kT)$ ($N_J =$ number in level J)

Maximum population: $dN_J/dJ = 0 \rightarrow J_{max} = (kT/2hcB)^{1/2} - \frac{1}{2}$

Isotope Effects in Linear Polyatomics -

Spectra for polyatomics same form as diatomics. B depends on more than one bond length.

I =
$$\sum_{i} m_{i} r_{i}^{2}$$
 for a linear polyatomic.

r_i – distance to centre of mass.

distance to centre of Mass mo me ms

$$m_{s}(r_{co}) + m_{o}r = m_{s}(r_{cs} - r) \qquad O = c = s$$

 $m_{s}r_{s} - m_{o}r_{co} \qquad O = c = s$

Parallel Axis Theorem:

$$T_{com} = T_c - m_F^2$$

= m_or_co^2 + m_sr_cs^2 - (\frac{m_sr_{cs} - m_or_c}{m})^2

Determine r_{co} , r_{cs} by isotopic substitution.

Polyatomic Non-Linear Molecules -

Define axes through Centre of Mass, such that one axis has largest possible I and one perpendicular has the smallest.

<u>CH₃I:</u>

e.g.
$$I_a = \sum_i m_i r_{i,a}^2$$

c axis has largest I

$$E = \frac{J_a^2}{2I_a} + \frac{J_b^2}{2I_b} + \frac{J_c^2}{2I_c}$$

<u>Spherical Top –</u> e.g. SF₆.

Quantum: $\langle J^2 \rangle = J(J+1)h^2$

 $(\mathsf{B}=\mathsf{h}/8\pi^2\mathsf{lc})$

 $I_a = I_b = i_c$, $E = J^2/2I$.

E = hcBJ(J+1)

 $\label{eq:symmetric Top - Any molecule with at least one n-fold axis of rotation. e.g. NH_3, benzene (n \ge 3). \\ \mbox{PROLATE:} I_b = I_c > I_a (CH_3F) \\ \mbox{OBLATE:} I_c > I_a = I_b (benzene) \\ \end{tabular}$

Prolate,

$$E = \frac{J_a^2}{2I_a} + \frac{J_b^2 + J_c^2}{2I_b}$$
$$E = \frac{J_a^2}{2I_a} + \frac{J^2 - J_a^2}{2I_b}$$

 J_a is component of angular momentum along the molecule-fixed a axis. By analogy,

 $<J_a> = Kh.$ K is a projection quantum number along a axis. K = 0, ±1, ... ±J.

→
$$E = \frac{h^2}{2I_b}J(J+1) + (\frac{h^2}{2I_a} - \frac{h^2}{2I_b})K^2$$

$$F(J,K) = BJ(J+1) + (A-B)K^2$$
 [A > B]

Oblate, same but:

 $F(J,K) = BJ(J+1) + (C-B)K^2$ [C < B]

If K = J - rotational motion is primarily about the top axis.

Selection Rules:

 $\Delta J = \pm 1$, $\Delta K = 0$ (dipole unchanged through rotation about symmetry axis). F(J+1, K) - F(J,K) = v = 2B(J+1)

Taking into account centrifugal distortion,

$$F(J,K) = BJ(J+1) + (A-B)K^{2} - D_{J}J^{2}(J+1)^{2} - D_{JK}J(J+1)K^{2} - D_{K}K^{4}$$

V = 2B(J+1) - 4D_{J}(J+1)^{3} - 2D_{JK}(J+1)K^{2}

Stark Effect - lifts M degeneracy -

M_J space-fixed projection quantum number.

$$F(J,K,M_J) = BJ(J+1) + (A-B)K^2 + \frac{\mu \epsilon KM_J}{J(J+1)hc}$$

$$J=3$$

$$K=1$$

$$E-fidd \quad splits \quad each$$

$$energy \quad level \quad into \quad 25tl$$

$$components$$

$$J=2$$

$$K=1$$

$$Perpendicular Polarisation:
$$\Delta M_J = 0$$

$$Perpendicular Polarisation:
$$\Delta M_J = 1$$$$$$

 $\frac{Asymmetric Tops -}{I_a \neq I_b \neq I_c.}$