MOLECULAR SPECTROSCOPY & ENERGY LEVELS NOTES

Basic Spectroscopic Facts to Know

Energy Levels for Rotation -

- $E_{J} = BJ(J+1) DJ^{2}(J+1)^{2}$ Linear molecules, diatomics: •
- $E_{I} = BJ(J+1)$ Spherical tops (SF_{6} , etc):
- $E_{JK} = BJ(J+1) + (A-B)K^{2}$ Symmetric tops:

Energy Levels for Vibration –

- Normal modes of polyatomic molecules (SHM): $E_{v} = \omega_{e}(v + \frac{1}{2})$ $E_{v} = \omega_{e}(v + \frac{1}{2}) - \omega_{e}x_{e}(v + \frac{1}{2})^{2}$ •
- Local modes, real diatomics, etc:

Vibrations in Electronic Spectra –

- Franck-Condon Principle: $I(v' \leftarrow v'') \propto |\langle \chi_{v''} | \chi_{v'} \rangle|^2$ (Franck-Condon Factor). ٠
- If r_e changes a lot, many vibrations excited. If r_e doesn't change then $\Delta v = 0$. •
- Only totally symmetric modes can be excited with many v' in absorption. •

Gross Selection Rules –

- Pure rotation in IR, Microwave: molecules with dipole moments.
- Pure rotational Raman: all molecules except spherical tops.
- Vib-Rot in IR: a dipole must change or appear in the vibrational motion. •
- Vib-Rot Raman: polarisability must change in the motion.
- Electronic Spectra: all molecules.

Selection Rules for rotational level changes -

- One-photon transitions (microwave, IR, UV), no other coupled angular momentum present: $\Delta J = \pm 1$.
- One-photon, other angular moment present: $\Delta J = 0, \pm 1$.
- Two-photon (Raman): $\Delta J = 0, \pm 2$. •

Selection Rules for Vibration level changes -

- IR, Raman Spectra, harmonic oscillator: $\Delta v = \pm 1$.
- Real molecules: $\Delta v = \pm 1, \pm 2$, etc (overtones much weaker than fundamental).
- Electronic Spectra: Δv = any, symmetric modes only. Intensities from Franck-Condon • factors.
- Exclusion Rule: in centro-symmetric molecules IR and Raman activity are mutually • exclusive.

Selection Rules for Electronic Transitions in Diatomics –

• $\Delta \Lambda = 0, \pm 1. \Delta S = 0. g \leftrightarrow u. \leftrightarrow \leftrightarrow +, -\leftrightarrow -.$

Branches -

- P branch $\Lambda J = -1$. R branch $\Lambda J = +1$. Q branch $\Lambda J = 0$.
- IR Spectra in diatomics show P and R branches.
- IR Spectra in parallel bands of linear molecules: P and R.
- IR Spectra in perpendicular bands of linear molecules: P,Q,R.
- IR Spectra in parallel bands of symmetric tops: P,Q,R. (others are more complex).

Electronic Spectra of diatomics -

- P and R branches in $\Sigma \Sigma$ transitions.
- P,Q and R in Σ – Π or vice-versa, and most others.

Constants -

 $B = h/(8\pi^2 cI)$

 $I = \mu r^2$

Energy Levels and Concepts

Units and Nomenclature -

Molecular Spectroscopy uses several non-SI units. Should usually stick to the units given. Often there is a ratio of ${}^{hv}/{}_{kT}$.

Energy: cm^{-1} , Hz, eV. $cm^{-1} x c$ (in cm s^{-1}) = Hz, i.e. $cm^{-1} x 3x10^8 x 100 =$ Hz.

Molecules: cm^{-1} , eV, Hz x h, kT are all per molecule. $kJ mol^{-1}$, RT imply per N molecules. Also useful: at 298K, kT ≈ 207cm^{-1}.

Nomenclature: Upper state – single prime (J', B', v', etc). Lower state – double prime (J'', B'', etc.)

What is Spectroscopy?

Change of one quantum state to another \rightarrow spectroscopic transition. Energy for this provided by EM radiation. Exchange of energy between radiation and matter.

Time-dependent Schrodinger Equation is important. In a weak oscillating EM field \rightarrow t-dependent. Perturbation Theory to describe the transition.

 $hv = E_{upp} - E_{low}$ [variation of μ over time]

Electric dipole transitions most common in Molecular Spectroscopy, but should be aware that light waves have

oscillating electric and w_{x} magnetic fields, so transfer could occur magnetically:

Therefore magnetically induced transition 10^4 times less likely than electrically. Systems with no oscillating electric dipole moment \rightarrow ESR and NMR.

Radiative Relaxation -

Spontaneous Emission:

Level 2 \rightarrow Level 1 by relaxation, giving out a photon of energy hv₂₁. Occurs in the absence of external radiation. Still involves transition dipole moment – quantum basis (interaction with radiation vacuum state).

If there are N₂ molecules in level 2, energy is emitted at the rate:

 $I_{21} = N_2 hv_{12} A$

Comparing this with the probability, A, of emission shows that intensity depends on v⁴. Hence, spontaneous emission irrelevant in microwave, but often dominant relaxation mechanism in UV (sets time limit for molecule in upper state).

Induced Emission / Absorption –

Coupling between oscillating transition moment and oscillating electromagnetic field.

Probability, $P_{12} = \rho(v_{12}) B_{12}$

Where ρ is the radiation density. <u>Net Emission / Absorption –</u> Must consider populations: $\downarrow: I_{em} = N_2 hv_{12} [A + B\rho(v_{12})]$ $\uparrow: I_{abs} = N_1 hv_{12}B\rho(v_{12})$

i.e. net depends on different in N1 and N2. Thermal Equilibrium,

$$\frac{N_2}{N_1} = e^{-(E_2 - E_1)/kT}$$

<u>Absorption Coefficients</u> – Linear (weak field):

dl = - $l\alpha cdx$

I = intensity, c = molecular concentration, α = absorption coefficient.

Integrate over path:

[Beer-Lambert Law]

Orbital Approximation – e.g. $H_2 = 1\sigma_g^2$

 $CO = 1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^2 1\pi^4 5\sigma^2$

Pauli: ψ_{tot} is antisymmetric wrt exchange of electrons. i.e. H₂ $(1\sigma_q^2) \rightarrow \psi = 1\sigma_q(\alpha)(1) 1\sigma_q(\beta)(2) - 1\sigma_q(\alpha)(2) 1\sigma_q(\beta)(1)$

 $I = I_0 e^{-\alpha/c}$

Born-Oppenheimer Approximation –

Electrons and nuclei experience same forces of magnitude but nuclei ~ 4 times more massive, so electrons move much more rapidly.

Energy of a molecule (but not atom) depends on the relative positions of nuclei. Need to consider this. Born-Oppenheimer Approximation \rightarrow nuclear and electronic motion are separable and independent (reasonable as nucleus moves much slower). Good approximation \rightarrow nuclei fixed.

Hence,

 $\psi_{tot} = \psi_{el}(q_{el}) \psi_{nucl}(q_{nucl})$

Similarly, can separate nuclear motion into vibration and rotation:

$$\begin{split} \psi_{\text{tot}} &\approx \psi_{\text{el}}(\textbf{q}_{\text{el}}) \; \psi_{\text{vib}}(\textbf{q}_{\text{vib}}) \; \psi_{\text{rot}}(\textbf{q}_{\text{rot}}) \\ & \textbf{E}_{\text{tot}} = \textbf{E}_{\text{el}} + \textbf{E}_{\text{vib}} + \textbf{E}_{\text{rot}} \\ & \Delta \textbf{E}_{\text{el}} >> \Delta \textbf{E}_{\text{vib}} >> \Delta \textbf{E}_{\text{rot}} \end{split}$$

Approximation is very bad when:

<u>Jahn-Teller Effect</u>: direct coupling of electronic and vibrational motions. <u>Lambda-type Doubling</u>: electronic and rotational coupling.

<u> Translational –</u>

Separated from other degrees of freedom so reference to Centre of Mass. Also, usually only concerned with changes within molecule – only effect of translation is small (Doppler Effect).

Not usually necessary to consider since:

 $\Delta E_{trans} << kT$

Can be separated rigorously (no approximation). (X_o, Y_o, Z_o) = coordinates of centre of mass.

$$X_{o} = rac{\sum\limits_{i} m_{i} x_{i}}{\sum\limits_{i} m_{i}}$$
 , and similar for Y_o, Z_o.

Particle i at (X_i, Y_i, Z_i) , where $X_i = X_0 + x_i$, etc. Thus coordinates relative to centre of mass.

 X_o , Y_o , Z_o variation = translational motion. Completely separately measurably from "internal" coordinations x_i , y_i , z_i .

LCAO Approximation –

From Orbital Approximation, electronically:

 $\begin{aligned} & \psi = \phi_1 \phi_2 \dots \phi_n & [\text{ each } \phi \text{ represents 1 electron }] \\ \text{LCAO} \rightarrow \text{Linear Combination of Atomic Orbitals,} \\ & \phi = \sum c_m \chi_m \text{ where, } c_m = \text{mixing coefficient, } \chi_m = \text{atomic orbital.} \end{aligned}$

Variation Principle – adjust c_m so that energy is as low as possible (more accurate). LCAO Approach works for small molecules, but computationally very difficult.

Bonding & Antibonding Molecular Orbitals -

Consider H₂. H $\rightarrow \chi$ = N e^{-r} (1 electron). Label each H 1s_A and 1s_B. Consider symmetry,

Molecule is symmetrical, so match e-density, $\propto |\psi|^2 \rightarrow \psi$ identical round each nucleus or same except for change of sign.

Hence,

$$\phi = c_A 1 s_A + c_B 1 s_B$$

 $c_A = c_B,$ $\phi = 1s_A + 1s_B$

[Normalisation not included]

$$\begin{array}{c} A \\ (+) \\ (+) \\ (s) \\$$

 $\sigma \rightarrow$ cylindrically symmetric about A-B.

 $g \rightarrow$ gerade, symmetric wrt centre of symmetry.

However, can also have: $c_A = -c_B [e-density still the same]$ $\phi = 1s_A - 1s_B$

Selection Rules -

Intensity \propto (N" – N') < ψ ' | μ_z | ψ " > ²

 μ_z is the key factor.

$$\mu_{z} = \sum_{\alpha=x,y,z} \lambda_{z_{\alpha}} \mu_{\alpha}$$

Pure rotational spectrum,

$$\psi_{el}$$
' = ψ_{el} '' & ψ_{vib} ' = ψ_{vib} ''

Symmetry tells us that observation of rotational transition requires the molecule to have a nonzero electric dipole moment.

First integral (λ_{α})gives rotational selection rules:

$$\Delta J = 0, \pm 1$$

 $\Delta \Lambda \text{ (or } \Delta \text{K)} = 0, \pm 1$

Second integral (μ) cannot be factorised into only vibrational / electronic parts. Expand μ_{α} as power series in vibrational coordinate Q.

Vibrational transition \rightarrow first term vanishes. 2nd term \rightarrow use orthogonality and factorises.

Hence, for allowed vibrational transition, dipole moment must change as vibration occurs. Also, $\Delta v = \pm 1$ for simple harmonic oscillator.

Allowed electronic transition, must contain totally symmetric molecular point group (Σ^{+} for diatomics).

Symmetric vibration (e.g. for diatomics) = and Δv_{α} . Non-symmetric vibration - Δv_{α} = 0,2,4... (odd changes the symmetry).

 $\begin{array}{l} \underline{\textit{Inversion and Parity Rule}}_{E^* f(X,Y,Z) = f(-X,-Y,-Z) \text{ where } E^* = \text{parity.} \\ E^*\psi = \pm \psi \qquad \qquad + \clubsuit \text{ even parity, } - \clubsuit \text{ odd parity.} \end{array}$

 $\langle \psi' \mid \mu_z \mid \psi'' \rangle \neq 0$ for allowed, \rightarrow integrand symmetric wrt E*. μ_z is antisymmetric, therefore $\psi'\psi''$ with the antisymmetric.

Hence,

+ \leftrightarrow - is allowed, + \leftrightarrow + and - \leftrightarrow - are forbidden.

Parity Rule different for magnetic dipole (even). Gives opposite result.

Centrosymmetrically,

Electric $g \leftrightarrow u$ allowed. **Magnetic** $g \leftrightarrow g / u \leftrightarrow u$ are allowed.