ATOMIC SPECTROSCOPY NOTES

Expected: knowledge of Quantum + Perturbation Theory: calculating eigenfunctions that are difficult by using:

$$\hat{H} = H_o + H'$$

where H' is a perturbation on H_o (zeroth order wavefunction). 1st Order: E = E_o + <H'>

Angular Momentum -

Measure of torque required to stop a body rotating. Single particle: $I = r^p$, where I is vector perpendicular to plane of rotation. $|I|^2 |I| = |I|^2 + |I|^2$

$$I_{z} = -i\hbar \frac{\partial}{\partial \phi} = \frac{\hbar}{i} [x \frac{\partial}{\partial y} - y \frac{\partial}{\partial z}]$$

$$I^{2} = -\hbar^{2} \Lambda^{2} \qquad \Lambda^{2} = \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}$$

Commutation –

$$\begin{bmatrix} I^2, I_z \end{bmatrix} = \begin{bmatrix} I^2, I_x \end{bmatrix} = \begin{bmatrix} I^2, I_y \end{bmatrix} = 0$$

$$\begin{bmatrix} I_x, I_y \end{bmatrix} = ihI_z \qquad \begin{bmatrix} I_y, I_z \end{bmatrix} = ihI_x \qquad \begin{bmatrix} I_z, I_x \end{bmatrix} = ihI_y$$

Electrons in atoms:

$$[l^2, H] = 0$$
 and $[l_z, H] = 0$

Thus, energy, square of orbital angular momentum and <u>one</u> of its components can all be simultaneously specified (eigenvalues).

Hydrogenic (1e) Atoms -

$$\left[\frac{-h^2}{2\mu}\nabla^2 - \frac{Ze^2}{4\pi\varepsilon_o r}\right]\psi = E\psi$$

Spherical Symmetry \rightarrow polar coordinates preferred.

Boundary Conditions,

$$Ψ$$
 finite for all r (including origin).
 $ψ→0$ as r→∞.
 $Ψ(r,θ,φ) = Ψ(r, [θ+2nπ], [φ+2mπ])$ n, m integers.

Separate,

$$\psi = R(r) Y(\theta, \phi)$$
 Radial and Angular components

Solutions as,

$$\psi_{n,l,ml} = R_{n,l}(r) Y_{l,ml} (\theta, \phi)$$

Quantisation,

$$E = \frac{-\mu e^{4} z^{2}}{32\pi^{2} \varepsilon_{o}^{2} h^{2} n^{2}} = \frac{-RhcZ^{2}}{n^{2}}$$

where $R = \frac{\mu e^{4}}{8\varepsilon_{o}^{2} h^{3}c}$, $n = 1, 2, 3...$

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. www.alchemyst.f2o.org Solving,

$$\frac{-t^{2}}{2\nu} \left[\frac{1}{r} \frac{\partial r}{\partial r^{2}} r \right] R(r) \gamma(\Theta, \phi) = \frac{t^{2}}{2\nu} \left[\frac{R(r)}{r^{2}} \Lambda^{2} \gamma(\Theta, \phi) \right]$$

$$+ V(r) R(r) \gamma(\Theta, \phi) = E R(r) \gamma(\Theta, \phi)$$

$$\left(\Lambda^{2} = \frac{1}{s_{1}^{2} r^{2}} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{1}{s_{1}^{2} r^{2}} \frac{\partial}{\partial \phi} \gamma_{1}^{2} \Theta \frac{\partial}{\partial \Theta} \right)$$

Only Λ^2 can change $Y(\theta,\phi)$ variables, therefore for a valid solution it is implied that this does not happen, i.e.

$$\Lambda^{2} Y(\theta, \phi) = C Y(\theta, \phi) \qquad [C = constant]$$

Make substitution to remove angular parts:

$$\frac{-t^2}{2\rho} \left[\frac{1}{r} \frac{\partial^2}{\partial r^2} r R(r) + \frac{C}{r^2} R(r) \right] + V(r) R(r) = E R(r) \quad (A)$$

Angular ψ identical to particle on a sphere, i.e.

$$y(e,d) = \Theta(e)\overline{\Phi}(b)$$

Treat θ as constant,

$$\frac{d^2}{d^2}\overline{\Phi}(\phi) = (\text{const})\overline{\Phi}(\phi) \quad (1)$$

This is a particle on a ring,

Subbing 2 into 1,

$$\frac{d^{2}}{d\phi^{2}} \overline{\Phi}(\phi) = -M^{2}\overline{\Phi}(\phi)$$
(eigenfunction)

Choose A = $\frac{1}{\sqrt{2\pi}}$ and B = 0 (Normalised).

Subbing in (1) & (2) into (0):

$$\begin{bmatrix} -\frac{M^2}{s_{in}e_{\theta}} + \frac{1}{s_{in}e_{\theta}} \frac{\partial}{\partial e} s_{in} & \theta \frac{\partial}{\partial \theta} \end{bmatrix} \Theta(\theta) = C \Theta(\theta)$$

Solve to give Associated Legendre Functions. Boundary Condition gives rise to I quantum numbers.

$$Y_{l,m}(0,\phi)$$
 (spherical harmonic)
 $\Lambda^2 Y_{l,m} = -i(l+1)Y_{l,m}$
 $C = -i(l+1).$

Sub this into A and let P(r) = r[R(r)]:

$$\begin{bmatrix} -\frac{t^2}{2\mu} \frac{\partial^2}{\partial r^2} + V_{eff} \end{bmatrix} P(r) = EP(r) (3) \text{ Radial}$$

$$V_{eff} = \frac{-Z_{e2}}{4\pi\epsilon_0 r} + U(U+1) \frac{t^2}{2\mu r^2}$$

V_{eff} – effective potential energy → true V + correction for centrifugal E(I). Solve (3) as R(r) → 0, r → ∞ and R(r) finite.

Quantum Numbers -

1) Principle Quantum Number, n.

Determines energy. Determines mean radius of electron orbital. For I = 0,

$$\langle r \rangle = \frac{3}{2} \alpha_0 \frac{r}{Z} \frac{4\pi\epsilon_0 h^2}{m_e e^2}$$

2) Orbital Angular Momentum, I

Determines "shapes" – angular distribution. Angular momentum.

$$(\underline{L})^{\prime 2} = [L(L+1)]^{\prime 2} K$$

L is a vector of length [I(I+1)]^{1/2} h, where I has integral values o \rightarrow n-1. Electrons with different I have different radial wavefunctions, because of centrifugal effect.

3) Magnetic Quantum Number, m

Projection of orbital angular momentum on a given axis \rightarrow Direction of orbital.

$$<|_{z}> = m_{l}h$$

m_l takes values –l, -l+1, …, +l i.e. (2l+1) values in total.

Eigenvalues and Eigenfunctions

For H atom, E is independent of I and m_I . Note: for p orbitals, I = 1. p_x , p_y , $p_z \neq m_I = 0, \pm 1$.

$$\Psi_{Px} = \frac{1}{\sqrt{2}} \left[\left| n, l = l, m_{l} = -1 \right\rangle - \left| n, l = l, m_{l} = +1 \right\rangle \right]$$

$$\Psi_{Py} = \frac{1}{\sqrt{2}} \left[\left| n, l = l, m_{l} = +1 \right\rangle + \left| n, l = l, m_{l} = -1 \right\rangle \right]$$

Real linear combinations:

$$\psi_{pz} = | n, l=1, m_l=0 >$$

For degenerate orbitals, any linear combination is a solution of the Schrodinger Equation.

Solutions to the Schrodinger Equation (1 electron)

R almost constant (depending on atomic number).

 $Y_{l, ml}(\theta, \phi)$ – complex, but independent of n.

 $R_{nl}(r)$ – near nucleus varies as r^l, but large distances varies as exp [- Zr/na_o]

Spectrum of a Hydrogen Atom

Experimental – low pressure electric discharge in H₂

- accelerated electrons / ions cause dissociation, ionisation and excitation.

- Electron / proton recombination also important.

Light emitted by excited H atoms analysed by spectrometer. Observe distinct series:

	Lyman (UV)	Balmer (vis)	Paschen (IR)
Emit down to:	n=1	n=2	n=3
	(in absorption obs	erve Lyman only).	

Transition Energies:

$$\Delta E = \pm h c R Z^{2} \left(\frac{1}{n_{\text{lower}}^{2}} - \frac{1}{n_{\text{upper}}^{2}} \right)$$

Wavenumber, v = $\Delta E/hc.$ v = $RZ^{2} \left(\frac{1}{n''^{2}} - \frac{1}{n'^{2}} \right)$

Note the dependence on R, and also the slight isotope dependence of R.

<u>He</u>+ -

$$\overline{V} = 4R\left(\frac{1}{n^2 - \frac{1}{m^2}}\right)$$
If $n_1 m_2$ even

$$\overline{V} = 4R\left(\frac{1}{n^2} - \frac{1}{(\frac{n}{2})^2}\right) \implies \text{appears like}$$
H lines.

Selection Rules – which transitions are allowed. Δn = anything integral. $\Delta l = \pm 1$.

 $\Delta m_{I} = 0, \pm 1.$

This comes from:

$$\int \psi' \not \psi'' d\tau \neq 0 \quad (i.e. totally symmetric)$$

$$= u_{\text{per}} \qquad (over \\ \text{dipole moment operator} (E & d radiation \\ interaction \\ \hat{H} = \hat{H}_0 + \mu E (\mu^{=-e,r})$$

Consider symmetry wrt inversion:

Electron Spin -

Inferred empirically from very high resolution spectra.

- splittings due to extra degree of freedom.
- Intrinsic angular moment of electron "spin".
- Quantum number $s = \frac{1}{2}$ only.

<u>Spin Angular Momentum =</u>

$$\sqrt{s(s+1)t} = \frac{\sqrt{s}t}{2}t$$

OR $\hat{s}^{2} \psi_{spin} = 3(s+1)t^{2} \psi_{spin}$
Spin projection, $m_{s} = \hat{s}_{2} \psi_{spin} = m_{s}t$, ψ_{spin}

Degeneracy –

For each $n \rightarrow n$ values of I, I = 0, 1, ... (n-1) For each I \rightarrow (2I+1) values of m_I, m_I = -I, -I+1, ... +I. Implies total degeneracy of n² for each. Including spin \rightarrow 2n² degenerate.

Spin-Orbit Coupling

Spin possesses a magnetic moment.

Orbiting electron creates a magnetic field "seen" by the electron spin. Field due to relative motion of charges – nucleus orbits electron!

Causes coupling of I and s to give total electronic angular momentum, j = I + s. j^2 , j_x^2 , j_y^2 , j_z^2 – same commutation properties as *I* equivalent.

For one-electron case, j is half-integral = $1 \pm \frac{1}{2}$. m_j takes values j, j-1, ... -j, i.e. (2j+1) degenerate.

< l.s > is evaluated using j = 1 + s, $j^2 = l^2 + s^2 + l.s$

$$\frac{F_{0}}{hc} = \frac{1}{2t^{2}} \langle \zeta (j^{2} - (t^{2} - s^{2})) \rangle$$

$$= \frac{1}{2t^{2}} \zeta [\langle j^{2} \rangle - \langle (t^{2} \rangle - \langle s^{2} \rangle]$$

$$= \frac{1}{2} \zeta [\langle j(j+1) - ((t+1) - s(s+1))]$$

Term Symbols

$$^{2S+1}L_{i}$$
, e.g. 3d $\rightarrow ^{2}D_{5/2}$, $^{2}D_{3/2}$

Spectrum Including S-O Coupling

New selection rules –

$$\Delta J = 0, \pm 1$$
 $\Delta m_j = 0, \pm 1$ $\Delta n = anything$ $\Delta l = \pm 1$

Lamb Shift – quantum field effect. Also relativistic increase in mass with velocity.

<u>Schrodinger –</u>

$$\begin{bmatrix} \sum -\frac{t^2}{2m_e} \nabla_i^2 + \sum V_{i,m} + \sum V_{i,j} \end{bmatrix} \psi = E \psi$$
electron
electron
KES
electron
repulsions

Energies, E, include the energies of all electrons and all interactions:

$$V_{i,N} = \frac{-Ze^2}{4\pi E_0 F_c}$$
, $V_{i,j} = 4\pi E_0 |E_i - E_j|$
con no longer exactly solve S.E

<u>Orbital Approximation</u> – Assume,

$$(t_{space}^{r}, r_{i}, r_{n}) = \phi_{a}(r_{i}) \phi_{b}(r_{2}) \dots \phi_{z}(r_{n})$$

$$3D \quad le \quad u_{superiode} \quad repulsion \quad \partial ven$$

$$positions \quad of \quad all other electrons$$

$$\left[\frac{-t^{2}}{2me} \nabla_{i}^{2} + V_{ini} + \sum_{i \neq j} V_{ij}\right] \phi(r_{i}) = \mathcal{E}_{i} \phi(r_{i})$$

1e equation solved by numerical method using self-consistent field approach:

- each electron moves in an orbital in the average field of the other electrons.
- Energies = "orbital energies".

Not quite true, should obey Pauli Exclusion and be linear combination, e.g.

$$\phi_{a}(r_{1}) \phi_{b}(r_{2}) \pm \phi_{a}(r_{2}) \phi_{b}(r_{1})$$

Total wavefunction has to be antisymmetric with respect to interchange of electron coordinates.

Self-Consistent Field Approach

Total Energy is not just sum of orbital energies, i.e. $\Sigma \epsilon_I$ because e-e repulsion is counted twice.

$$E_{tat} = \sum_{i=1}^{\infty} \varepsilon_i - \langle \sum_{i\neq j} V_{ij} \rangle$$

NB: as for H atom:

<u>Electron Configuration</u> – which orbitals occupied and how many electrons (Pauli). Use orbital approximation.

Determine Ground State by Aufbau and Pauli Exclusion Principles Li: 1s²2s¹ Na: 1s²2s²2p⁶3s¹

etc.

Spectra of Many Electron Atoms

Within Orbital Approximation, can only change orbital of 1 electron during transition, e.g.

Main concern is valence electron excitation. Core electrons can be excited, but much higher energy (ionisation may occur).

Selection Rules for Alkali Metals

Closed shell core – no resultant spin or orbital angular momentum. Alkali Metals \rightarrow pseudo-1s atom, so same selection rules as for Hydrogenics.

Comparison with H-atom -

- 1) different l-states of same n are non-degenerate, due to effects of e-e repulsion (penetration and shielding).
- 2) Bigger spin-orbit coupling (low resolution spectra \rightarrow observable).

Penetration and Shielding –

Effects of valence electron \leftrightarrow core electron repulsion.

Consider Li,

In 1s²3d excited configuration, 3d orbital is almost completely outside the core.

- experiences attraction to +3 nucleus
- but repulsion due to core electrons
- act like a -2 point charge "shielding".

Net Effective Nuclear Charge \approx +1.

In $1s^22s^1$ configuration, substantial penetration of 2s electron inside $1s^2$ core \rightarrow incomplete shielding, $Z_{eff} \approx + 1.28$.

 $1s^22p - 2p$ electron less penetrating. $Z_{eff} \approx + 1.02$.

Therefore 2s electron is more tightly bound than 2p, therefore lower in energy.

NB: also 2s orbital in Li lower in energy than in H-atom. Same true for 2p, but not as different.

In general, ns < np < nd < nf, etc.

Sodium Atom Spectrum

1) $3s \rightarrow 3p$ – lowest energy transition in absorption.

cf. H atom 3s and 3p approximately degenerate.

2) Several series:

$$ns \rightarrow 3p$$
SHARP $np \rightarrow 3s$ PRINCIPAL – also present in absorption $nd \rightarrow 3p$ DIFFUSE $nf \rightarrow 3d$ FUNDAMENTAL – almost same E as H-atom transitions

3) <u>Spin-Orbit Splitting –</u>

Same j states obtained as in H-atom but hydrogenic theory does not work. Splittings larger. Increase with Z (not as rapidly as Z^4). cf. spin-orbit coupling constants:

Li(2p)	0.3 cm⁻¹	H (2p)	0.243 cm⁻¹
Na (3p)	17.2 cm⁻¹	H (3p)	0.072 cm ⁻¹
K (4p)	57.7 cm ⁻¹	H (4p)	0.031 cm ⁻¹

Quantum Defect -

For H-atom, $E = IE - hcR/n^2$

For alkali metals, effects of e-e repulsion means energies lower than predicted by Rydberg formula (above).

$$\mathsf{E}_{\mathsf{n}\mathsf{l}} = IE - \frac{hcR}{{v_{\mathsf{n}\mathsf{l}}}^2}$$

Where v_{nl} is effective principal quantum number. Define the quantum defect,

$$\delta_{nl} = n - v_{nl}$$
$$E_{nl} = IE - \frac{hcR}{(n - \delta_{nl})^2}$$

For a given I, it turns out that δ_{nl} is almost independent of $n \rightarrow \delta_{l}$.

Electrons spend such short time close to the nucleus that its behaviour is almost independent of n. Therefore transition energies:

$$(nl \leftarrow n'l') = hcR\left[\frac{l}{(n'-\delta_{l'})^2} - \frac{l}{(n-\delta_{l'})^2}\right]$$

For a given series (common n' l'):

$$\Delta \mathsf{E} = const - \frac{hcR}{\left(n - \delta_l\right)^2}$$

A plot of ΔE against $1/(n-\delta_l)^2$ gives straight line (adjust δ_l for best fit). NB: Ionisation Energy = $\frac{hcR}{(n-\delta_l)}$ where nl is the lowest state.

Helium Atom

<u>New Features</u> – 2e in unfilled shells (except Ground State) \rightarrow 2 sources of orbital and spin angular moment. New important effects on energy levels and degeneracies.

Orbital Angular Momentum -

Primarily concerned with configurations 1snl. Doubly excited states are unstable wrt ionisation.

1s electron has I = 0, therefore total orbital angular momentum is the angular momentum of the excited electron, I. Total orbital angular momentum L = I.

Spin Angular Momentum – Both electrons have $s = \frac{1}{2}$, $m_s = \frac{1}{2}$ or $-\frac{1}{2}$ (α or β). Ground State (1s²) Pauli → $m_{s1} = \pm \frac{1}{2}$ and $m_{s2} = \pm \frac{1}{2}$ Spin paired (antiparallel) → "singlet" state. Resultant s = 0, $m_s = 0$.

Excited Configurations, 1snl

- no restrictions on m_{s1} , m_{s2} from Pauli. Spin Parallel \rightarrow resultant magnetic moment. Spin Paired (opposed) \rightarrow no resultant magnetic moment. Define total spin angular momentum, S = s.

$$|S| = \sqrt{(s(s+1))}$$
 h.

shows same commutation relationships as other angular momentum operators.
 → quantisation.

$$S^2 \psi_{spin} = S(s+1)t^2 \psi_{spin}$$

 S takes values $s_1 + s_2 \dots + s_7 - s_2$
 $= 0 \text{ or } 1$
 S_2 is quantised with eigenvalues Ms
 $M_S = + S_{3--3} - S$
For $S = 1$; $M_S = 1, 0, -1$ triplet
 $S = 0$; $M_S = 0$ only singlet

In general triplet state has lower energy than singlet state from same configuration.

<u>Selection Rules</u> – New rule, $\Delta S = 0$. Therefore singlet \leftrightarrow triplet is forbidden.

In Absorption: Observe $1s^2 ({}^1S_0) \rightarrow 1snp ({}^1P)$

In Emission: Use discharge lamp – ionisation followed by recombination $He^+ + e^- \rightarrow He^* \rightarrow emission$

Excited atoms formed in configurations. 1snl (¹L) or 1snl (³L) As $\Delta S = 0$, two sets of transitions observed. Singlet \leftrightarrow singlet or triplet \leftrightarrow triplet.

1s electron shields outer electron from nucleus. Penetration effects → different I states have different energy. ns < np < nd < nf etc.

Spin-Orbit Coupling in many electron atoms – $J = L + S \rightarrow J^2$ and J_z quantised.

Quantum Numbers:

J = L + S, ..., | L-S | $M_J = J, J-1, ..., -J.$ NB: can only occur for triplet states in Helium. e.g. S = 1, L = 1 \rightarrow ³P "Term" J = 2,1,0 \rightarrow ³P₂, ³P₁, ³P₀ "Level"

<u>Additional Selection Rules:</u> $\Delta J = 0, \pm 1$

$$\Delta M_J = 0, \pm 1$$

NB: in He, spin-orbit interaction is very strong \rightarrow very small splittings.

Spin Wavefunctions and Pauli Principle

For a 2e system:

For Helium excited states, each electron can have $m_s = \pm \frac{1}{2}$ (represent ψ by α and β). This suggests 4 possibilities:

Neither singlet nor triplet – electrons are indistinguishable.

Wavefunction must contain both possibilities with equal weighting. Two ways:

$$\psi^{+} = \frac{1}{12} (\psi_{5} + \psi_{+}) = \frac{1}{\sqrt{2}} \Big[\alpha(i) \beta(2) + \beta(i) \alpha(2) \Big]$$

$$\psi^{-} = \frac{1}{\sqrt{2}} (\psi_{3} - \psi_{+}) = \frac{1}{\sqrt{2}} \Big[\alpha(i) \beta(2) - \beta(i) \alpha(2) \Big]$$

Equal probability of electron 1 or 2 being in spin state α or β .

<u> Pauli Principle –</u>

Total ψ must be antisymmetric wrt exchange of any 2 electrons (applies generally to all identical half-integral particles).

Therefore $\psi_{\text{tot}} = \psi_{\text{space}}\psi_{\text{spin}}$ = antisymmetric wrt interchange.

Consider spin, $\psi_1\psi_2\psi_{\pm}$

$$P_{12} \Psi_{1} = P_{12} \alpha(1) \alpha(2) = \alpha(2) \alpha(1) = \psi_{1}$$

$$P_{12} \Psi_{1} = P_{12} \alpha(2) \alpha(2) = \alpha(2) \alpha(1) = \psi_{1}$$

$$exchange Similarly,
$$opeabor P_{12} \Psi_{2} = \Psi_{2}$$

$$P_{12} \Psi_{2} = \Psi_{2}$$

$$P_{12} \Psi_{2} = \Psi_{2}$$

$$P_{12} \Psi_{2} = \Psi_{2}$$

$$= [\alpha(2)\beta(1) \pm \beta(2)\alpha(1)] / \sqrt{2}$$

$$= \Psi_{2}$$

$$\Gamma_{1} \Psi_{1}, \Psi_{2}, \Psi^{2} \text{ are } (3)$$$$

Hence, ψ_{space} must be antisymmetric.

e.g. 1s2s configuration with ψ_{spin} symmetric.

$$\varphi_{space} = \frac{1}{\sqrt{2}} \left[\varphi_{1s}(r_1) \varphi_{2s}(r_2) - \varphi_{2s}(r_1) \varphi_{1s}(r_2) \right]$$

$$TRIPLET$$

Conversely,

$$\psi^{-} is (a) = 0 \quad \forall space (S)$$

$$\psi_{space} = \sqrt{\frac{1}{2}} \left[\phi_{1s}(r_{1}) \phi_{2s}(r_{2}) + \phi_{2s}(r_{1}) \phi_{1s}(r_{2}) \right]$$
Sincust
$$NB \cdot \psi_{11}\psi_{21}, \psi^{+} \quad make \quad up \quad \pm riplet$$

$$\psi^{-} is \quad \pm he \quad \underline{singlet}$$

Why is Triplet Lower in Energy than Singlet?

<u>"Fermi Hole"</u>

Probability of finding both electrons at same point in space.

$$P(r_1, r_2) = P(r_1, r_2) = |\psi(r_1, r_2)|^2$$

For Triplet –

$$\psi(r_1,r_2) = -\psi(r_2,r_1)$$

$$\div\psi(r_2,r_1) = -\psi(r_2,r_1)$$

Zero probability - 2 electrons keep apart, \Rightarrow Fermi Hole at $r_1 = r_2$

For Singlet –

Therefore for triplet state electrons must stay further apart \rightarrow less repulsion.

Not whole truth though, as in triplet state, 1s electron is less shielded, therefore nl orbital is slightly more compact than corresponding orbital in singlet state.

Angular Momentum Coupling in many electron atoms

General atom – more than 1e with both orbital and spin angular momentum. e.g. $C - 1s^22s^22p^2$. Excited states: $1s^22s^22p^3d$, etc.

Configuration split into energy levels by 3 types of interaction -

- a) spin correlation (couples spins, electrostatic).
- b) Orbital electrostatic interaction.
- c) Spin-Orbit Coupling (magnetic).

Pattern of energies, quantum numbers, etc – depend on which effect is largest.

Russell-Saunders Coupling (L-S Coupling)

(a) $>\sim$ (b) >> (c) – common for light elements.

a) Define S = Σs_i –sum of spin angular momenta.

e.g. S = $s_1 + s_2$, ... | $s_1 - s_2$ | for 2 electrons.

b) L = ΣI_i – resultant orbital angular momentum. e.g. L = $I_1 + I_2$, $I_1 + I_2 - 1$, ... | $I_1 - I_2$ | Good quantum numbers L & S $\rightarrow \psi_{tot}$ is eigenfunction of L² and S. e.g. for a 2p 3d configuration: $I_1 = 1, I_2 = 2, \Rightarrow L = 3,2,1 (F, D, P)$ $s_1 = \frac{1}{2}, s_2 = \frac{1}{2} \Rightarrow S = 1, 0.$ \Rightarrow Terms are ³F. ¹F. ³D. ¹D. ³P. ¹P.

Singlet-Triplet Splitting – due to spin correlation. Splitting of different L values – due to different electrostatic repulsions (different orbitals). For max L – electrons "orbit" in same direction. For min L – electrons "orbit" in opposite directions (\rightarrow more repulsions).

If spin-orbit interaction small – spin and orbital angular momenta couple \rightarrow Total Angular Momentum J = L + S. Hence Quantum Number J = L + S, L + S -1 ...

e.g. ³F: S=1, L=3 \rightarrow J = 4,3,2.

<u>Degeneracies</u> – Each state J is (2J+1) degenerate. $M_J = J, J-1, ... -J.$ For 2p 3d configuration there are 60 states.

<u>Lande Interval Rule</u> Spin-orbit Hamiltonian, $H_{SO} = \sum_{i} J_{i} l_{i} s_{i}$

Approximate by hcA L.S

$$F_{Lc} = \frac{1}{2} A \left[J(J+1) - L(J+1) + S(S+1) \right]$$

$$E(J+1) - E(J) = \frac{h_c A}{2} \left[(J+1)(J+2) - J(J+1) \right] = h_c A (J+1)$$
(some L & S values)

Terms from Configurations with Equivalent Open-Shell Electrons

e.g. for $2p^2$ configuration two equivalent 2p electrons. Pauli Principle \rightarrow restrictions Would expect I₁ = 1, I₂ = 1, s₁ = $\frac{1}{2}$, s₂ = $\frac{1}{2}$. \rightarrow ³D, ¹D, ³P, ¹P, ³S, ¹S. In fact only get ¹D, ³P, ¹S – why?

Microstates in decoupled representation

Consider 2p3d configuration again. In limit when all couplings $\rightarrow 0$, the defined quantum numbers would be: $l_1, m_{l1}, s_1, m_{s1}, l_2, m_{l2}, s_2, m_{s2}$. The 2p3d configuration would then be: $(2l_1+1)(2s_1+1)(2s_2+1) = 3 \times 2 \times 5 \times 2 = 60$ -fold degenerate.

NOTE: Couplings do not create any new states – they only lift degeneracies.

Furthermore, number of states with given value of $m_{l1} + m_{s1} + m_{l2} + m_{s2} = \#$ of states (in L-S coupling) with same value of m_J .

Returning to $2p^2$ configuration, consider possible microstates, can have situation with both electrons have same n, I, m_I – NOT ALLOWED

$$m_{L_{1}}=1, m_{S_{1}}=1/2, m_{L_{2}}=1, m_{S_{2}}=1/2 - 2m = m_{T}=2$$
(Since $M_{L}=2m_{C}=2-part of D$)
$$m_{L_{1}}=1, m_{S_{1}}=1/2, m_{L_{2}}=0, m_{S_{2}}=1/2$$

$$m_{L_{1}}=0, m_{S_{2}}=1/2, m_{S_{2}}=1/2$$

$$m_{L_{1}}=0, m_{S_{2}}=1/2, m_{S_{2}}=1/2$$

$$m_{L_{1}}=0, m_{S_{2}}=1/2, m_{S_{2}}=1/2$$

Electrons indistinguishable \rightarrow 1 microstate.

Consider all possibilities:

Total number of microstates only 15 (not 60). NB: Degeneracies in L-S representation.

$$^{3}D_{3,2,1}$$
 D_{2} $^{3}P_{2,1,0}$ P_{1} $^{3}S_{1}$ S_{2}
 $7tSt3$ 5 $5t3t1$ 3 3 1

Group Microstates according to Σm (obeying Pauli Principle)

$$m_{3} = +2 + (0 - 1 - 2 \\ (1, \frac{1}{2}, 0, \frac{1}{2}) (1, \frac{1}{2}, 0, \frac{1}{2}) (1, \frac{1}{2}, -1, \frac{1}{2}) \\ (1, \frac{1}{2}, 0, \frac{1}{2}) (1, -\frac{1}{2}, 0, \frac{1}{2}) (1, -\frac{1}{2}, -1, \frac{1}{2}) \\ (1, \frac{1}{2}, -1, \frac{1}{2}) (0, \frac{1}{2}, 0, -\frac{1}{2}) \\ (1, \frac{1}{2}, 0, -\frac{1}{2}) \\ (-1, \frac{1}{2}, 0, \frac{1}{2}) \end{cases}$$

No $\Sigma m = \pm 3$ states \rightarrow no ${}^{3}D_{3} \rightarrow$ no ${}^{3}D.$ 2 $\Sigma m = \pm 3$ states \rightarrow both ${}^{1}D_{2}$ and ${}^{3}P_{2}$.

¹D requires $1m_J=2$, $1m_J=1$, $1m_J=0$, $1m_J=-1$... ³P requires $1m_J=2$, $2m_J=1$, $3m_J=0$, $2m_J=1$... After counting all these states, leaves one other \rightarrow ¹S₀.

(SEE TUTORIAL QUESTION)

Order of Quantum States - Hund's Rules

For a given configuration with LS coupling – order of states normally given by:

- 1) Terms with largest S, i.e. lie lowest in energy.
- 2) For given S, terms with largest L are lowest, e.g.

For less than half full shells lowest J-value has lowest energy.
 For more than half full shells highest J-value has lowest energy.
 (S.O constant. A is negative).

Note $-p^4$ has same terms as p^2 , therefore O similar to C, but J order reversed: For d^2 , obtain ${}^{3}F_{2} < {}^{3}F_{3} < {}^{3}F_{4}$. For d^8 , obtain ${}^{3}F_{4} < {}^{3}F_{3} < {}^{3}F_{2}$. Spectra of L-S Coupled Atoms

Selection Rules:

 $\begin{array}{ll} \Delta n = anything & \Delta I = \pm 1 & \Delta S = 0 \\ \Delta J = 0, \pm 1 \ (but not \ J=0 \leftrightarrow J=0) & \Delta L = 0, \pm 1 & \Delta M_J = 0, \pm 1 \end{array}$

NB: heavier elements show "intercombination" lines e.g. ${}^{5}S \rightarrow {}^{3}P (\Delta S = 1)$ Spin-Orbit coupling can weakly mix states of different S = breakdown of L-S Coupling scheme.

j-j Coupling

Occurs when spin orbit coupling is large compared to spin correlation or orbital/orbital interaction.

NB: spin-orbit coupling is a magnetic interaction and magnetic fields are relativistic electric fields, therefore coupling large for heavier atoms.

If spin-orbit coupling sufficiently large, the spin and orbital angular momentum of each electron coupled \rightarrow j.

e.g. $l_1 + s_1 = j_1$ MAGNETIC $l_2 + s_2 = j_2$ MAGNETIC $j_1 + j_2 = J$ ELECTROSTATIC

Quantum Numbers,

$$2\rho_{34}^{34} \begin{cases} i_1 = l_1 + \frac{1}{2}, \ l_1 = \frac{1}{2}, \ l_1 = \frac{1}{2}, \ l_2 = \frac{1}{2}, \$$

Now couple j_1 and j_2 to give J states, written as:

$$\begin{bmatrix} 3_{2}, 5_{2} \end{bmatrix}_{4,3,2,1} \begin{bmatrix} 3_{2}, 3_{2} \end{bmatrix}_{3,2,1,0}$$

$$\begin{bmatrix} 1_{2}, 5_{2} \end{bmatrix}_{3,2} \begin{bmatrix} 1_{2}, 3_{2} \end{bmatrix}_{2,1,0}$$

Note: L & S no longer defined – no ¹P, ³P, etc.

Spectra in j-j Coupling

Selection Rules:

 $\Delta I = \pm 1, \Delta j = 0, \pm 1 \text{ for } 1 \text{ electron and } \Delta I = \Delta j = 0 \text{ for other electrons.}$ $\Delta J = 0, \pm 1 \qquad \qquad \Delta M_J = 0, \pm 1$

<u>Energy Levels (j-j) –</u> Determined by j_1 and j_2 :

No L or S, therefore no S/L selection rules. j-j coupled states are a mixture of singlet and triplet components. Some atoms show intermediate behaviour, therefore neither L-S or j-j selection rules are obeyed.

C = L-S Coupled Si Ge Sn Pb = j-j Coupled