ATOMIC SPECTROSCOPY NOTES

Expected: knowledge of Quantum + Perturbation Theory: calculating eigenfunctions that are difficult by using:

$$
\hat{H}=H_{o}+H^{\prime}
$$

where H^{\prime} is a perturbation on H_{o} (zeroth order wavefunction). $1^{\text {st }}$ Order:

$$
\mathrm{E}=\mathrm{E}_{0}+\left\langle\mathrm{H}^{\prime}\right\rangle
$$

Angular Momentum -

Measure of torque required to stop a body rotating.
Single particle: $I=r^{\wedge} p$, where I is vector perpendicular to plane of rotation.

$$
\begin{gathered}
\left|I^{2}\right|=I_{x}^{2}+I_{y}^{2}+I_{z}^{2} \\
\mathrm{I}_{\mathrm{z}}=-i h \frac{\partial}{\partial \phi}=\frac{h}{i}\left[x \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}\right] \\
\mathrm{I}^{2}=-\mathrm{h}^{2} \Lambda^{2} \quad \Lambda^{2}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}
\end{gathered}
$$

Commutation -

$$
\left[\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{y}}\right]=\mathrm{ih} \mathrm{I}_{\mathrm{z}}
$$

$$
\left[I^{2}, I_{z}\right]=\left[I^{2}, I_{x}\right]=\left[I^{2}, I_{y}\right]=0
$$

$$
\left[\mathrm{l}_{\mathrm{y}}, \mathrm{l}_{\mathrm{z}}\right]=\mathrm{ihI}_{x}
$$

$$
\left[\mathrm{I}_{\mathrm{z}}, \mathrm{I}_{\mathrm{x}}\right]=\mathrm{ihl} \mathrm{l}_{\mathrm{y}}
$$

Electrons in atoms:

$$
\left[\mathrm{I}^{2}, \mathrm{H}\right]=0 \text { and }[\mathrm{I}, \mathrm{H}]=0
$$

Thus, energy, square of orbital angular momentum and one of its components can all be simultaneously specified (eigenvalues).

Hydrogenic (1e) Atoms -

$$
\left[\frac{-h^{2}}{2 \mu} \nabla^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}\right] \psi=E \psi
$$

Spherical Symmetry \rightarrow polar coordinates preferred.
Boundary Conditions,

$$
\begin{gathered}
\psi \text { finite for all } r \text { (including origin). } \\
\psi \rightarrow 0 \text { as } r \rightarrow \infty . \\
\psi(r, \theta, \phi)=\psi(r,[\theta+2 \mathrm{n} \pi],[\phi+2 \mathrm{~m} \pi]) \quad \mathrm{n}, \mathrm{~m} \text { integers. }
\end{gathered}
$$

Separate,

$$
\psi=\mathrm{R}(r) \mathrm{Y}(\theta, \phi) \quad \text { Radial and Angular components }
$$

Solutions as,

$$
\psi_{\mathrm{n}, \mathrm{l}, \mathrm{ml}}=\mathrm{R}_{\mathrm{n}, \mathrm{l}}(\mathrm{r}) \mathrm{Y}_{\mathrm{l}, \mathrm{ml}}(\theta, \phi)
$$

Quantisation,

$$
\begin{aligned}
& E=\frac{-\mu e^{4} z^{2}}{32 \pi^{2} \varepsilon_{o}{ }^{2} h^{2} n^{2}}=\frac{-R h c Z^{2}}{n^{2}} \\
& \text { where } R=\frac{\mu e^{4}}{8 \varepsilon_{o}{ }^{2} h^{3} c}, n=1,2,3 \ldots
\end{aligned}
$$

Solving,

$$
\begin{aligned}
& \frac{-t^{2}}{2 \mu}\left[\frac{1}{r} \frac{\partial 2}{\partial r^{2} r}\right] R(r) y(\theta, \phi)-\frac{\hbar^{2}}{2 \mu}\left[\frac{R G}{r^{2}} \Lambda^{2} y(\theta, \phi]\right. \\
& \quad+V(r) R(r) y(\theta, \phi)=E R(r) y(\theta, \phi) \\
& \left(\Lambda^{2}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{0}{\partial \theta}\right)
\end{aligned}
$$

Only Λ^{2} can change $Y(\theta, \phi)$ variables, therefore for a valid solution it is implied that this does not happen, ie.

$$
\Lambda^{2} Y(\theta, \phi)=C Y(\theta, \phi) \quad[C=\text { constant }]
$$

Make substitution to remove angular parts:

Angular ψ identical to particle on a sphere, ie.

$$
\begin{equation*}
u(\theta, d)=\Theta(\theta) \Phi(\phi) \tag{A}
\end{equation*}
$$

Treat θ as constant,

$$
\frac{d^{2}}{d \phi^{2} \Phi(\phi)}=(\text { cost) } \Phi(\phi)
$$

This is a particle on a ring,

$$
\Phi(\phi)=A e^{i M \phi}+B e^{-i M \phi} \quad \text { (2) }
$$

Subbing 2 into 1 ,

$$
\frac{d^{2}}{d \phi^{2}} \Phi(\phi)=-M^{2} \Phi(\phi)
$$

Choose $A=1 / \sqrt{2 \pi}$ and $B=0$ (Normalised).
Subbing in (1) \& (2) into (0):

$$
\left[-\frac{m^{2}}{\sin ^{2} \theta}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}\right] \Theta(\theta)=C \Theta(\theta)
$$

Solve to give Associated Legendre Functions. Boundary Condition gives rise to I quantum numbers.

$$
\begin{gathered}
Y_{l, m}(\theta, \phi) \quad(\text { spherical harmonic }) \\
\wedge^{2} Y_{L, m}=-\left((L+1) Y_{L, m}\right. \\
C=-L(1+1) .
\end{gathered}
$$

Sub this into A and let $P(r)=r[R(r)]$:

$$
\begin{gathered}
{\left[-\frac{t^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}}+V_{e f f}^{-}\right] P(r)=E P(r)(3) \text { Redial }} \\
V_{\text {eff }}=\frac{-z_{e}}{4 \pi \varepsilon_{0} r}+\left(\overline{(l+1)} \frac{\hbar^{2}}{2 r^{2}}\right.
\end{gathered}
$$ Solve (3) as $R(r) \rightarrow 0, r \rightarrow \infty$ and $R(r)$ finite.

Quantum Numbers -

1) Principle Quantum Number, n.

Determines energy. Determines mean radius of electron orbital. For I = 0,

$$
\begin{aligned}
\langle r\rangle & =\frac{3}{2} a_{0} \frac{r^{2}}{2} \\
a_{0} & =\text { Bohr Radius; } \frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}}
\end{aligned}
$$

2) Orbital Angular Momentum, I

Determines "shapes" - angular distribution. Angular momentum.

$$
\left\langle\underline{L}^{2}\right\rangle^{1 / 2}=\left[((L+1)]^{1 / 2} \hbar\right.
$$

L is a vector of length $[I(I+1)]^{1 / 2} h$, where I has integral values $o \rightarrow n-1$.
Electrons with different I have different radial wavefunctions, because of centrifugal effect.

3) Magnetic Quantum Number, \mathbf{m}_{1}

Projection of orbital angular momentum on a given axis $\boldsymbol{\rightarrow}$ Direction of orbital.

$$
<l_{z}>=m \mid h
$$

m_{1} takes values $-I,-|+1, \ldots,+|$
i.e. $(2 \mid+1)$ values in total.

Eigenvalues and Eigenfunctions
For H atom, E is independent of I and m_{l}. Note: for p orbitals, $I=1 . p_{x}, p_{y}, p_{z} \neq m_{l}=0, \pm 1$.

$$
\begin{aligned}
& \psi_{p_{x}}=\frac{1}{\sqrt{2}}\left[\left|n, l=1, m_{l}=-1\right\rangle-\left|n, l=1, m_{l}=+1\right\rangle\right] \\
& \psi_{p_{0}}=\frac{i}{\sqrt{2}}\left[\left|n, l=1, m_{l}=+1\right\rangle+\left|n, l=1, m_{l}=-1\right\rangle\right]
\end{aligned}
$$

Real linear combinations:

$$
\psi_{\mathrm{pz}}=\mid \mathrm{n}, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=0>
$$

For degenerate orbitals, any linear combination is a solution of the Schrodinger Equation.

Solutions to the Schrodinger Equation (1 electron)

$$
E=\frac{h c R Z^{2}}{n^{2}}, \psi_{n, l, m}=R_{n i}(r) Y_{c m}(\theta, \phi)
$$

R almost constant (depending on atomic number).
$Y_{l, m l}(\theta, \phi)$ - complex, but independent of n.
$R_{n(r)}(r)$ - near nucleus varies as r^{\prime}, but large distances varies as $\exp \left[-\mathrm{Zr} / n a_{0}\right.$]

Spectrum of a Hydrogen Atom

Experimental - low pressure electric discharge in H_{2}

- accelerated electrons / ions cause dissociation, ionisation and excitation.
- Electron / proton recombination also important.

Light emitted by excited H atoms analysed by spectrometer. Observe distinct series:
Paschen (IR)
Emit down to: $n=1 \quad n=2 \quad n=3$
(in absorption observe Lyman only).

Transition Energies:

$$
\begin{aligned}
& \Delta E=\text { the RZ } Z^{2}\left(\frac{1}{n_{\text {lower }}^{2}}-\frac{1}{n_{\text {Upper }}^{2}}\right) \\
& \text { Wavenumber, } v=\Delta E / h c . v=R Z^{2}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{\prime 2}}\right)
\end{aligned}
$$

Note the dependence on R, and also the slight isotope dependence of R.
$\underline{\mathrm{He}^{+}-}$

$$
\begin{aligned}
& \bar{v}=4 R\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right) \\
& \text { if } 1, m-\text { even } \\
& \bar{v}=4 R\left(\frac{\Lambda}{\left(\frac{n}{2}\right)^{2}}-\frac{1}{\left(\frac{m}{2}\right)^{2}}\right) \Rightarrow \text { appears like } \\
&
\end{aligned}
$$

Selection Rules - which transitions are allowed.
$\Delta \mathbf{n}=$ anything integral. $\Delta \mathbf{l}= \pm 1 . \quad \Delta \mathbf{m}_{\mathbf{l}}=0, \pm 1$.
This comes from:

$$
\begin{array}{r}
\int \psi^{\prime *} \hat{\mu} \psi^{\prime \prime} d \tau \neq 0 \quad \text { (i.e. totally symmetric) } \\
\left.=\begin{array}{l}
\text { lower } \\
\text { dipole moment operator }\left[\begin{array}{c}
E \text { of radiation } \\
\text { interaction }
\end{array}\right. \\
\hat{H}=\hat{H}_{0}+\mu E(\rho=-e r)
\end{array}\right]
\end{array}
$$

Consider symmetry wit inversion:

$$
x, y, z \rightarrow-x,-y,-z
$$

Electron Spin -

Inferred empirically from very high resolution spectra.

- splittings due to extra degree of freedom.
- Intrinsic angular moment of electron "spin".
- Quantum number $s=1 / 2$ only.
$\underline{\text { Spin Angular Momentum }=}$

$$
\begin{gathered}
\sqrt{s(s+1)} \hbar=\frac{\sqrt{3}}{2} \hbar \\
\text { OR } \hat{s}^{2} \Psi_{\text {spin }}=s(s+1) \hbar^{2} \Psi_{\text {spin }} \\
\text { Spinprojection, } m_{s}=\hat{s}_{2} \Psi_{\text {spin }}=m_{s} \hbar \Psi_{\text {spin }}
\end{gathered}
$$

Degeneracy -
For each $n \rightarrow n$ values of $\mathrm{I}, \mathrm{I}=0,1, \ldots(\mathrm{n}-1)$
For each $\mathrm{I} \rightarrow(2 \mid+1)$ values of $m_{l}, m_{l}=-l,-|+1, \ldots+|$.
Implies total degeneracy of n^{2} for each. Including spin $\rightarrow 2 n^{2}$ degenerate.

Spin-Orbit Coupling

Spin possesses a magnetic moment.

$$
\begin{aligned}
& \begin{aligned}
m_{\text {spin }}=g_{e} \gamma_{e} s=-g_{e} \frac{N_{3}}{\hbar} \cdot S \\
L_{\text {gyramgnatic ratro, }}=\frac{-e}{2 m_{e}}
\end{aligned}
\end{aligned}
$$

Orbiting electron creates a magnetic field "seen" by the electron spin. Field due to relative motion of charges - nucleus orbits electron!
Causes coupling of I and sto give total electronic angular momentum, $j=I+s$. $\mathrm{j}^{2}, \mathrm{j}_{\mathrm{x}}{ }^{2}, \mathrm{j}_{\mathrm{y}}{ }^{2}, \mathrm{j}_{\mathrm{z}}{ }^{2}$ - same commutation properties as / equivalent.

$$
\begin{gathered}
\mathrm{j}^{2} \psi=\mathrm{j}(\mathrm{j}+1) \mathrm{h}^{2} \psi \\
\mathrm{j}_{2} \psi=\mathrm{m} \mathrm{j} \psi \psi
\end{gathered}
$$

For one-electron case, j is half-integral $=\mathrm{I} \pm 1 / 2 . \mathrm{m}_{\mathrm{j}}$ takes values $\mathrm{j}, \mathrm{j}-1, \ldots$ - j , i.e. $(2 \mathrm{j}+1)$ degenerate.

$$
\begin{aligned}
& \frac{E_{s o}}{h_{c}}=\frac{1}{h c}\left\langle H_{s o}\right\rangle=\frac{\zeta_{n} l}{\hbar^{2}}\langle l . s\rangle \quad \zeta_{n l}=\frac{\alpha^{2} R Z^{4}}{n^{3} l(l+1 / 2(1+1)} \\
& R=\text { Rydberg, } \\
& \alpha=\text { fine structure, } \alpha=\frac{e^{2}}{4 \varepsilon_{E_{0}} \hbar c}
\end{aligned}
$$

< I.s > is evaluated using $\mathrm{j}=\mathrm{I}+\mathrm{s}, \mathrm{j}^{2}=\mathrm{I}^{2}+\mathrm{s}^{2}+\mathrm{I} . \mathrm{s}$

$$
\begin{aligned}
\therefore \frac{E_{s o}}{h c} & =\frac{1}{2 \hbar^{2}}\left\langle\zeta\left(j^{2}-\left(2-s^{2}\right)\right\rangle\right. \\
& =\frac{1}{2 \hbar^{2}} \zeta\left[\left\langle j^{2}\right\rangle-\left\langle\left(^{2}\right\rangle-\left\langle s^{2}\right\rangle\right]\right. \\
& =\frac{1}{2} \xi[j(j+1)-((l+1)-s(s+1)]
\end{aligned}
$$

Term Symbols

$$
{ }^{2 S+1} L_{j} \text {, e.g. } 3 d \rightarrow{ }^{2} D_{5 / 2},{ }^{2} D_{3 / 2}
$$

Spectrum Including S-O Coupling

New selection rules -
$\Delta \mathbf{J}=0, \pm 1$
$\Delta \mathrm{m}_{\mathrm{j}}=0, \pm 1$
$\Delta \mathrm{n}=$ anything
$\Delta l= \pm 1$

Lamb Shift - quantum field effect. Also relativistic increase in mass with velocity.

$$
\begin{aligned}
& \text { Alkali Metals - many electron atoms } \\
& \Psi= \psi(x, y, z) \psi \text { spin- } \\
&= \psi\left(x, y, z, m_{s}\right) \\
& 2 e: \quad \psi= \psi\left(x_{0}, y_{0}, z_{y}\left(m_{s}\right)_{i} ; x_{2}, y_{2}, z_{2},\left(m_{s}\right)_{2}\right) \\
&(6 \text { spatial, } 2 \text { spin coordinates } \\
&(\text { generally } 3 N \text { spatial }+N \text { spin) }
\end{aligned}
$$

Schrodinger -

Energies, E, include the energies of all electrons and all interactions:

$$
V_{i, N}=\frac{-Z_{e^{2}}^{4 \pi e^{r}}}{4} ; \quad \underbrace{V_{i, j}=\frac{e^{2}}{4 \pi \varepsilon_{j} I_{i}-r_{j} \mid}}_{\text {can no longer exactly solve S.E }}
$$

Orbital Approximation -

Assume,

ie equation solved by numerical method using self-consistent field approach:

- each electron moves in an orbital in the average field of the other electrons.
- Energies = "orbital energies".

Not quite true, should obey Pauli Exclusion and be linear combination, e.g.

$$
\phi_{a}\left(r_{1}\right) \phi_{b}\left(r_{2}\right) \pm \phi_{a}\left(r_{2}\right) \phi_{b}\left(r_{1}\right)
$$

Total wavefunction has to be antisymmetric with respect to interchange of electron coordinates.

Self-Consistent Field Approach

Total Energy is not just sum of orbital energies, ie. $\Sigma \varepsilon_{1}$ because ese repulsion is counted twice.

$$
E_{\text {tat }}=\sum_{i} \varepsilon_{i}-\left\langle\sum_{i \neq j} v_{i j}\right\rangle
$$

NB : as for H atom:

$$
\Phi_{a}\left(r_{1}\right)=\underbrace{R_{n}\left(r_{1}\right)}_{\substack{\text { Hon- } \\ \text { Hydrogenic } \\ \text { same, soherical hamonic }}} \underbrace{\left(\theta_{1}, d_{1}\right)}_{(m l}
$$

Electron Configuration - which orbitals occupied and how many electrons (Pauli).
Use orbital approximation.
Determine Ground State by Aufbau and Pauli Exclusion Principles

$$
\text { Li: } 1 s^{2} 2 s^{1} \quad N a: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}
$$

etc.

Spectra of Many Electron Atoms

Within Orbital Approximation, can only change orbital of 1 electron during transition, e.g.

$$
\begin{aligned}
& \begin{array}{l}
1 s^{2} 2 s^{2} 2 p^{63} 3 s^{1}
\end{array} \quad \rightarrow 1 s^{2} 2 s^{2} 2 p^{8} n p^{\prime} \\
& \\
& =\sum_{i} e r i \quad \text { (electric dipole operator) }
\end{aligned}
$$

Main concern is valence electron excitation. Core electrons can be excited, but much higher energy (ionisation may occur).

Selection Rules for Alkali Metals

Closed shell core - no resultant spin or orbital angular momentum.
Alkali Metals \rightarrow pseudo-1s atom, so same selection rules as for Hydrogenics.
Comparison with H -atom -

1) different l-states of same n are non-degenerate, due to effects of e-e repulsion (penetration and shielding).
2) Bigger spin-orbit coupling (low resolution spectra $\boldsymbol{\rightarrow}$ observable).

Penetration and Shielding -

Effects of valence electron \leftrightarrow core electron repulsion.
Consider Li,
In $1 s^{2} 3 \mathrm{~d}$ excited configuration, 3d orbital is almost completely outside the core.

- experiences attraction to +3 nucleus
- but repulsion due to core electrons
- act like a -2 point charge "shielding".

Net Effective Nuclear Charge $\approx+1$.
In $1 s^{2} 2 s^{1}$ configuration, substantial penetration of $2 s$ electron inside $1 s^{2}$ core $\boldsymbol{\rightarrow}$ incomplete shielding, $Z_{\text {eff }} \approx+1.28$.
$1 s^{2} 2 p-2 p$ electron less penetrating. $Z_{\text {eff }} \approx+1.02$.
Therefore 2 s electron is more tightly bound than $2 p$, therefore lower in energy.
NB: also 2 s orbital in Li lower in energy than in H-atom. Same true for 2 p , but not as different.
In general, ns < np < nd < nf, etc.

Sodium Atom Spectrum

1) $3 s \rightarrow 3 p$ - lowest energy transition in absorption.
cf. H atom 3 s and 3 p approximately degenerate.
2) Several series:
ns $\rightarrow 3 p \quad$ SHARP
$\mathrm{np} \rightarrow$ 3s PRINCIPAL - also present in absorption
nd $\rightarrow 3 p \quad$ DIFFUSE
$n f \rightarrow$ 3d \quad FUNDAMENTAL - almost same E as H -atom transitions
3) Spin-Orbit Splitting -

Same j states obtained as in H -atom but hydrogenic theory does not work.
Splittings larger. Increase with Z (not as rapidly as Z^{4}).
cf. spin-orbit coupling constants:

$\mathrm{Li}(2 \mathrm{p})$	$0.3 \mathrm{~cm}^{-1}$	$\mathrm{H}(2 \mathrm{p})$	$0.243 \mathrm{~cm}^{-1}$
$\mathrm{Na}(3 \mathrm{p})$	$17.2 \mathrm{~cm}^{-1}$	$\mathrm{H}(3 \mathrm{p})$	$0.072 \mathrm{~cm}^{-1}$
$\mathrm{~K}(4 \mathrm{p})$	$57.7 \mathrm{~cm}^{-1}$	$\mathrm{H}(4 \mathrm{p})$	$0.031 \mathrm{~cm}^{-1}$

Quantum Defect -

For H-atom, E = IE -hcR/n ${ }^{2}$
For alkali metals, effects of e-e repulsion means energies lower than predicted by Rydberg formula (above).

$$
\mathrm{E}_{n 1}=I E-\frac{h c R}{v_{n l}^{2}}
$$

Where $v_{n l}$ is effective principal quantum number.
Define the quantum defect,

$$
\begin{gathered}
\delta_{\mathrm{nl}}=\mathrm{n}-v_{\mathrm{nl}} \\
\mathrm{E}_{\mathrm{nl}}=I E-\frac{h c R}{\left(n-\delta_{n l}\right)^{2}}
\end{gathered}
$$

For a given I, it turns out that δ_{nl} is almost independent of $\mathrm{n} \rightarrow \delta_{1}$.
Electrons spend such short time close to the nucleus that its behaviour is almost independent of n. Therefore transition energies:

$$
\left.C_{n} L n^{\prime} l^{\prime}\right)=\operatorname{hcR}\left[\frac{1}{\left(n^{\prime}-\delta_{V^{\prime}}\right)^{2}}-\frac{1}{\left(n-\delta_{l}\right)^{2}}\right]
$$

For a given series (common n' l'):

$$
\Delta \mathrm{E}=\text { const }-\frac{h c R}{\left(n-\delta_{l}\right)^{2}}
$$

A plot of $\Delta \mathrm{E}$ against $1 /\left(\mathrm{n}-\delta_{\mathrm{l}}\right)^{2}$ gives straight line (adjust δ_{\mid}for best fit).
NB: Ionisation Energy $=\frac{h c R}{\left(n-\delta_{l}\right)}$ where nl is the lowest state.

Helium Atom

New Features $-2 e$ in unfilled shells (except Ground State) $\rightarrow 2$ sources of orbital and spin angular moment. New important effects on energy levels and degeneracies.

Orbital Angular Momentum -

Primarily concerned with configurations 1snl. Doubly excited states are unstable wrt ionisation.

1s electron has I $=0$, therefore total orbital angular momentum is the angular momentum of the excited electron, I. Total orbital angular momentum L = I.

Spin Angular Momentum -

Both electrons have $s=1 / 2, m_{s}=1 / 2$ or $-1 / 2(\alpha$ or $\beta)$.
Ground State (1s ${ }^{2}$)
Pauli $\rightarrow \mathrm{m}_{\mathrm{s} 1}= \pm 1 / 2$ and $\mathrm{m}_{\mathrm{s} 2}=\mp 1 / 2$
Spin paired (antiparallel) \rightarrow "singlet" state.
Resultant $\mathrm{s}=0, \mathrm{~m}_{\mathrm{s}}=0$.

Excited Configurations, 1snl

- no restrictions on $\mathrm{m}_{\mathrm{s} 1}$, $\mathrm{m}_{\mathrm{s} 2}$ from Pauli.

Spin Parallel \rightarrow resultant magnetic moment.
Spin Paired (opposed) \rightarrow no resultant magnetic moment.
Define total spin angular momentum, $\mathrm{S}=\mathrm{s}$.

$$
|S|=\sqrt{ }(s(s+1)) h .
$$

- shows same commutation relationships as other angular momentum operators.
\rightarrow quantisation.

$$
\begin{aligned}
& \hat{S}^{2} \Psi_{\text {spin }}=s(S+1) \hbar^{2} \Psi_{\text {spin }} \\
& S \text { takes values } s_{1}+s_{2}, \ldots\left|s_{1}-s_{2}\right| \\
& =0 \text { or } 1 \\
& S_{2} \text { is quantised with eigenvalues } M_{s} \\
& M_{s}=+S, \ldots,-S \\
& \text { For } S=1 ; M_{s}=1,0,-1 \quad \text { triplet } \\
& S=0 ; M_{s}=0 \text { only singlet }
\end{aligned}
$$

In general triplet state has lower energy than singlet state from same configuration.
Selection Rules -
New rule, $\Delta \mathrm{S}=0$.
Therefore singlet \leftrightarrow triplet is forbidden.

In Absorption:

$$
\text { Observe } 1 \mathrm{~s}^{2}\left({ }^{1} \mathrm{~S}_{0}\right) \rightarrow 1 \operatorname{snp}\left({ }^{1} \mathrm{P}\right)
$$

In Emission:

Use discharge lamp - ionisation followed by recombination

$$
\mathrm{He}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{He}^{*} \rightarrow \text { emission }
$$

Excited atoms formed in configurations.
$1 \mathrm{snl}\left({ }^{1} \mathrm{~L}\right)$ or $1 \mathrm{snl}\left({ }^{3} \mathrm{~L}\right)$
As $\Delta \mathrm{S}=0$, two sets of transitions observed.
Singlet \leftrightarrow singlet or triplet \leftrightarrow triplet.
1s electron shields outer electron from nucleus.
Penetration effects \rightarrow different I states have different energy.

$$
\mathrm{ns}<\mathrm{np}<\mathrm{nd}<\mathrm{nf} \text { etc. }
$$

Spin-Orbit Coupling in many electron atoms $\mathrm{J}=\mathrm{L}+\mathrm{S} \rightarrow \mathrm{J}^{2}$ and J_{z} quantised.

Quantum Numbers:

$$
\begin{gathered}
J=L+S, \ldots,|L-S| \\
M_{J}=J, J-1, \ldots,-J .
\end{gathered}
$$

NB: can only occur for triplet states in Helium.
e.g. $S=1, L=1 \rightarrow^{3} \mathrm{P}$ "Term"
$\mathrm{J}=2,1,0 \rightarrow{ }^{3} \mathrm{P}_{2},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{\text {o }} \quad$ "Level"

Additional Selection Rules:

$\Delta \mathrm{J}=0, \pm 1$
$\Delta \mathrm{M}_{\mathrm{J}}=0, \pm 1$

NB: in He, spin-orbit interaction is very strong \rightarrow very small splittings.

Spin Wavefunctions and Pauli Principle

For a 2e system:

$$
\begin{aligned}
\Psi_{\text {tot }}= & \Psi_{\text {spaciec }} \Psi_{\text {spin }} \\
& 6 \text { coords } \frac{2}{2} \text { spin }
\end{aligned}
$$

For Helium excited states, each electron can have $m_{s}= \pm 1 / 2$ (represent ψ by α and β). This suggests 4 possibilities:

$$
\begin{gathered}
\psi_{1}=\alpha(1) \alpha(2) 11 \quad \psi_{2}=\beta(1) \beta(2) \\
\psi_{3}=\alpha(1) \beta(2) \quad 1 \mathrm{~L} \quad \psi_{4}=\beta(1) \alpha(2) \\
\psi_{3} \text { and } \psi_{4} \text { have } M_{s}=0 .
\end{gathered}
$$

Neither singlet nor triplet - electrons are indistinguishable.
Wavefunction must contain both possibilities with equal weighting. Two ways:

$$
\begin{aligned}
& \psi^{+}=\frac{1}{\sqrt{2}}\left(\psi_{3}+\psi_{4}\right)=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)] \\
& \psi^{-}=\frac{1}{\sqrt{2}}\left(\psi_{3}-\psi_{4}\right)=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
\end{aligned}
$$

Equal probability of electron 1 or 2 being in spin state α or β.

Pauli Principle -

Total ψ must be antisymmetric wrt exchange of any 2 electrons (applies generally to all identical half-integral particles).
Therefore $\psi_{\text {tot }}=\psi_{\text {space }} \psi_{\text {spin }}=$ antisymmetric wrt interchange.
Consider spin, $\psi_{1} \Psi_{2} \psi_{ \pm}$

$$
\begin{aligned}
& P_{12} \psi_{1}=P_{12} \alpha(1) \alpha(2)=\alpha(2) \alpha(1)=\psi_{1} \\
& \text { exchange } S_{\text {imlarly, }} \\
& \text { opeator } P_{12} \psi_{2}=\psi_{2} \\
& P_{12} \psi_{1}=P_{12}[\alpha(1) \beta(2) \pm \beta(1) \alpha(2)] / \sqrt{2} \\
&=[\alpha(2) \beta(1) \pm \beta(2) \alpha(1)] / \sqrt{2} \\
&=\psi_{ \pm} \\
& \therefore \psi_{1}, \psi_{2}, \psi^{ \pm} \text {are (} \$
\end{aligned}
$$

Hence, $\psi_{\text {space }}$ must be antisymmetric.
e.g. 1 s 2 s configuration with $\psi_{\text {spin }}$ symmetric.

$$
\text { Hspace }=\frac{1}{\sqrt{2}}\left[\phi_{1 s}\left(r_{1}\right) \phi_{23}\left(r_{2}\right)-\phi_{2 s}\left(r_{1}\right) \phi_{1 s}\left(r_{2}\right)\right]_{\text {TRIPLET }}
$$

Conversely,

$$
\begin{aligned}
& \psi^{-} \text {is (a) } \Rightarrow \psi_{\text {space }}(S \\
& \psi_{\text {space }}=\frac{1}{\sqrt{2}}\left[\phi_{1 s}\left(r_{1}\right) \phi_{2 s}\left(r_{2}\right)+\phi_{2 s}\left(r_{1}\right) \phi_{1 s}\left(r_{2}\right)\right] \\
& \text { singlet } \\
& \text { NB: } 4, \Psi_{2}, \text { P }^{+} \text {make up triplet } \\
& \psi^{-} \text {is the singlet }
\end{aligned}
$$

Why is Triplet Lower in Energy than Singlet?
"Fermi Hole"
Probability of finding both electrons at same point in space.

$$
\begin{gathered}
I_{1}=r_{2}=\Sigma \\
P\left(r_{1}, r_{2}\right)=P(r, r)=|\psi(r, r)|^{2}
\end{gathered}
$$

For Triplet -

$$
\begin{aligned}
& \psi\left(r_{1}, r_{2}\right)=-\psi\left(r_{2}, r_{1}\right) \\
& \therefore \Psi\left(r_{1}, r\right)=-\psi(r, r) \\
& \text { Zero probability }-2 \text { electrons keep part, } \\
& \quad \Rightarrow \text { Fermi Hole at } r_{1}=r_{2}
\end{aligned}
$$

For Singlet -

$$
\begin{aligned}
& \psi\left(r_{1}, r_{2}\right)=\psi\left(r_{2}, r_{1}\right) \\
& \cdots P(r, r) \text { can be non-zero. }
\end{aligned}
$$

Therefore for triplet state electrons must stay further apart \rightarrow less repulsion.
Not whole truth though, as in triplet state, is electron is less shielded, therefore nl orbital is slightly more compact than corresponding orbital in singlet state.

Angular Momentum Coupling in many electron atoms

General atom - more than ie with both orbital and spin angular momentum.
egg. $C-1 s^{2} 2 s^{2} 2 p^{2}$. Excited states: $1 s^{2} 2 s^{2} 2 p 3 d$, etc.
Configuration split into energy levels by 3 types of interaction -
a) spin correlation (couples spins, electrostatic).
b) Orbital electrostatic interaction.
c) Spin-Orbit Coupling (magnetic).

Pattern of energies, quantum numbers, etc - depend on which effect is largest.

Russell-Saunders Coupling (L-S Coupling)

> (a) >~ (b) >> (c) - common for light elements.
a) Define $S=\Sigma s_{i}-$ sum of spin angular momenta.
e.g. $S=s_{1}+s_{2}, \ldots\left|s_{1}-s_{2}\right|$ for 2 electrons.
b) $\mathrm{L}=\Sigma \mathrm{l}_{\mathrm{i}}-$ resultant orbital angular momentum.
egg. $L=I_{1}+I_{2}, I_{1}+I_{2}-1, \ldots\left|I_{1}-I_{2}\right|$

Good quantum numbers $L \& S \rightarrow \psi_{\text {tot }}$ is eigenfunction of L^{2} and S.
e.g. for a $2 p$ 3d configuration:
$I_{1}=1, I_{2}=2, \rightarrow L=3,2,1(F, D, P)$
$S_{1}=1 / 2, s_{2}=1 / 2 \rightarrow S=1,0$.
\rightarrow Terms are ${ }^{3} \mathrm{~F},{ }^{1} \mathrm{~F},{ }^{3} \mathrm{D},{ }^{1} \mathrm{D},{ }^{3} \mathrm{P},{ }^{1} \mathrm{P}$.
Singlet-Triplet Splitting - due to spin correlation.
Splitting of different L values - due to different electrostatic repulsions (different orbitals).
For max L - electrons "orbit" in same direction.
For min L - electrons "orbit" in opposite directions (\rightarrow more repulsions).
If spin-orbit interaction small - spin and orbital angular momenta couple \rightarrow Total Angular Momentum J = L + S.
Hence Quantum Number J = L + S, L + S -1 ...
e.g. ${ }^{3} \mathrm{~F}: \mathrm{S}=1, \mathrm{~L}=3 \rightarrow \mathrm{~J}=4,3,2$.

Degeneracies -

Each state J is $(2 \mathrm{~J}+1)$ degenerate.
$\mathrm{M}_{\mathrm{J}}=\mathrm{J}, \mathrm{J}-1, . .-\mathrm{J}$.
For $2 p 3 d$ configuration there are 60 states.

Lande Interval Rule -

Spin-orbit Hamiltonian, $\mathrm{H}_{\mathrm{sO}}=\sum_{i} J_{i} l_{i} S_{i}$
Approximate by hcA L.S

$$
\begin{aligned}
& E / h c=\frac{1}{2} A[J(J+1)-L(L+1)-S(S+1)] \\
& E(J+1)-E(J)=\frac{h c A}{2}[(J+1)(J+2)-J(J+1)]=h c A(J+1) \\
& (\text { same } L \text { \& values) }
\end{aligned}
$$

Terms from Configurations with Equivalent Open-Shell Electrons

e.g. for $2 p^{2}$ configuration two equivalent $2 p$ electrons.

Pauli Principle \rightarrow restrictions
Would expect $\mathrm{I}_{1}=1, \mathrm{I}_{2}=1, \mathrm{~s}_{1}=1 / 2, \mathrm{~s}_{2}=1 / 2$.
$\rightarrow{ }^{3} \mathrm{D},{ }^{1} \mathrm{D},{ }^{3} \mathrm{P},{ }^{1} \mathrm{P},{ }^{3} \mathrm{~S},{ }^{1} \mathrm{~S}$.
In fact only get ${ }^{1} \mathrm{D},{ }^{3} \mathrm{P},{ }^{1} \mathrm{~S}$ - why?

Microstates in decoupled representation

Consider 2p3d configuration again.
In limit when all couplings $\rightarrow 0$, the defined quantum numbers would be:
$\mathrm{l}_{1}, \mathrm{~m}_{11}, \mathrm{~s}_{1}, \mathrm{~m}_{\mathrm{s} 1}, \mathrm{I}_{2}, \mathrm{~m}_{12}, \mathrm{~s}_{2}, \mathrm{~m}_{\mathrm{s} 2}$.
The 2p3d configuration would then be:
$\left(2 l_{1}+1\right)\left(2 s_{1}+1\right)\left(2 l_{2}+1\right)\left(2 s_{2}+1\right)=3 \times 2 \times 5 \times 2=60$-fold degenerate.
NOTE: Couplings do not create any new states - they only lift degeneracies.

Furthermore, number of states with given value of $m_{11}+m_{s 1}+m_{12}+m_{s 2}=\#$ of states (in L-S coupling) with same value of m_{J}.

Returning to $2 p^{2}$ configuration, consider possible microstates, can have situation with both electrons have same n, I, m_{1} - NOT ALLOWED

$$
\begin{array}{r}
m_{L_{1}}=1, m_{s_{1}}=1 / 2, m_{L_{2}}=1, m_{s_{2}}=-1 / 2 \quad \sum m=m_{J}=2 \\
\quad\left(\text { since } M_{L}=\sum m_{l}=2 \text { part of } D\right) \\
\left.m_{L_{1}}=1, m_{s_{1}}=1 / 2, m_{L_{2}}=0, m_{s_{2}}=-1 / 2\right\} \text { interchange } \\
m_{L_{1}}=0, m_{s_{2}}=-1 / 2, m_{L_{2}}=1, m_{s_{2}}=1 / 2 \text { quantamers }
\end{array}
$$

Electrons indistinguishable $\rightarrow 1$ microstate.
Consider all possibilities:
Total number of microstates only 15 (not 60).
NB: Degeneracies in L-S representation.

Group Microstates according to Σm (obeying Pauli Principle)

$$
\begin{array}{cccc}
m_{J}=+2 & +1 & 0 & -1 \\
(1,1 / 2,1,-1 / 2) & (1,1 / 2,0,-1 / 2) & (1,1 / 2,-1,-1 / 2) \\
(1,1 / 2,0,1 / 2) & (1,-1 / 2,0,1 / 2) & (1,-1 / 2,-1,1 / 2) \\
& (1,1 / 2,-1,1 / 2) & (0,1 / 2,0,-1 / 2) & \text { 3states 2stats } \\
& & (1,1 / 2,0,-1 / 2) \\
& & (-1,1 / 2,0,1 / 2)
\end{array}
$$

No $\Sigma m= \pm 3$ states \rightarrow no ${ }^{3} D_{3} \rightarrow$ no ${ }^{3} \mathrm{D}$. $2 \Sigma m= \pm 3$ states \rightarrow both ${ }^{1} D_{2}$ and ${ }^{3} P_{2}$.
${ }^{1}$ D requires $1 m_{J}=2,1 m_{J}=1,1 m_{J}=0,1 m_{J}=-1 \ldots$
${ }^{3}$ P requires $1 m_{\jmath}=2,2 m_{\jmath}=1,3 m_{\jmath}=0,2 m_{\jmath}=1 \ldots$
After counting all these states, leaves one other $\rightarrow{ }^{1} \mathrm{~S}_{0}$.

(See Tutorial Question)

Order of Quantum States - Hund's Rules

For a given configuration with LS coupling - order of states normally given by:

1) Terms with largest S, i.e. lie lowest in energy.
2) For given S, terms with largest L are lowest, e.g.

$$
\begin{aligned}
& \text { from } d^{2} \rightarrow{ }^{1} G^{3} F^{\prime} D_{1}^{3} p_{5} ' S \\
& \text { (1) Gives } 3 F_{S}, 3 p<' G, D^{\prime} S \\
& \text { (2) Gives } 3 F<3 P_{;}{ }^{\prime}<1 D<' S
\end{aligned}
$$

3) For less than half full shells lowest J-value has lowest energy. For more than half full shells highest J -value has lowest energy. ($\mathrm{S} . \mathrm{O}$ constant. A is negative).
Note - p^{4} has same terms as p^{2}, therefore O similar to C , but J order reversed:
For d^{2}, obtain ${ }^{3} \mathrm{~F}_{2}<{ }^{3} \mathrm{~F}_{3}<{ }^{3} \mathrm{~F}_{4}$.
For d^{8}, obtain ${ }^{3} \mathrm{~F}_{4}<{ }^{3} \mathrm{~F}_{3}<{ }^{3} \mathrm{~F}_{2}$.

Spectra of L-S Coupled Atoms

Selection Rules:

$\Delta \mathrm{n}=$ anything	$\Delta \mathrm{l}= \pm 1$	$\Delta \mathrm{~S}=0$
$\Delta \mathrm{~J}=0, \pm 1$ (but not $\mathrm{J}=0 \leftrightarrow \mathrm{~J}=0)$	$\Delta \mathrm{L}=0, \pm 1$	$\Delta \mathrm{M}_{\mathrm{J}}=0, \pm 1$

NB: heavier elements show "intercombination" lines e.g. ${ }^{5} S \rightarrow{ }^{3} P(\Delta S=1)$
Spin-Orbit coupling can weakly mix states of different $S=$ breakdown of L-S Coupling scheme.

j-j Coupling

Occurs when spin orbit coupling is large compared to spin correlation or orbital/orbital interaction.
NB: spin-orbit coupling is a magnetic interaction and magnetic fields are relativistic electric fields, therefore coupling large for heavier atoms.
If spin-orbit coupling sufficiently large, the spin and orbital angular momentum of each electron coupled $\rightarrow \mathrm{j}$.
e.g.

$l_{1}+\mathrm{s}_{1}=\mathrm{j}_{1}$	MAGNETIC
$\mathrm{l}_{2}+\mathrm{s}_{2}=\mathrm{j}_{2}$	MAGNETIC
$\mathrm{j}_{1}+\mathrm{j}_{2}=\mathrm{j}$	ELECTROSTATIC

Quantum Numbers,

$$
2{ }^{\circ} d\left\{\left\{\begin{array}{l}
j_{1}=L_{1}+1 / 2, L_{1}-1 / 2 \text { of. } \\
l_{1}=1 \Rightarrow j_{1}=3 / 2 \text { or } 1 / 2 \\
l_{2}=2 \Rightarrow j<=5 / 2 \text { or } 3 / 2
\end{array}\right.\right.
$$

Now couple j_{1} and j_{2} to give J states, written as:

$$
\begin{array}{ll}
{[3 / 2,5 / 2]_{4,3,2,1}} & {[3 / 2,3 / 2]_{3,2,1,0}} \\
{[1 / 2,5 / 2]_{3,2}} & {[1 / 2,3 / 2]_{2,1}}
\end{array}
$$

Note: L \& S no longer defined - no ${ }^{1} \mathrm{P},{ }^{3} \mathrm{P}$, etc.

Spectra in j-j Coupling

Selection Rules:

$\Delta l= \pm 1, \Delta j=0, \pm 1$ for 1 electron and $\Delta l=\Delta j=0$ for other electrons.
$\Delta \mathrm{J}=0, \pm 1$

$$
\Delta \mathrm{M}_{J}=0, \pm 1
$$

Energy Levels (j-i) -

Determined by j_{1} and j_{2} :

No L or S, therefore no S/L selection rules.
j-j coupled states are a mixture of singlet and triplet components.
Some atoms show intermediate behaviour, therefore neither L-S or j-j selection rules are obeyed.

Group IV Atoms -
C = L-S Coupled
Si
Ge intermediate
Sn
Pb = j-j Coupled

