APPLICATIONS OF STATISTICAL MECHANICS NOTES

Statistical Mechanics links Energy-Levels (Quantum) to Macroscopic Properties (Thermodynamics).

Partition Function

For N molecules in volume V and temperature T,

Helmholtz Free Energy:

Measure of the number of distinguishable complexions of N-particle system.

 $A_N = -kT \ln Q_N$

(wrt lowest energy state).

Links to other thermodynamic quantities using this relation. dA = - pdV - SdT

Therefore,

$$V_{AC} = -\frac{\Delta A}{2T} = k \ln \Theta + kT \frac{\Delta A \Theta}{2T} = 2(i)$$

$$V_{T} = kT^{2} \left(\frac{\Theta A \Theta}{T}\right) = 2 = kT^{2} \left(\frac{A \Theta}{T}\right)$$

$$V_{T} = kT \frac{\Delta A \Theta}{T} = kT \frac{\Delta A \Theta}{T} = kT^{2} \left(\frac{A \Theta}{T}\right) = 2 = kT^{2} \left(\frac{A \Theta}{T$$

Calculating the partition function much simpler if can divide into non-interacting parts (e.g. independent molecules).

Total Energy, $E_i = \varepsilon_{i,1} + \varepsilon_{i,2} + \dots + \varepsilon_{i,N}$ Therefore,

If molecules are identical and indistinguishable:

$$Q_N = q^N/N!$$

But $Q_N = q^N$ if e.g. on lattice sites.

Molecular Partition Function (Revision) $q = \frac{2}{2}g: e^{-\epsilon i / k \tau}$ $\epsilon : = \epsilon i^{hr} + \epsilon i^{hoh} + \epsilon i^{elec} \begin{bmatrix} 8 - 0 \\ Approx \end{bmatrix}$ $\Rightarrow q = q_{hr} q_{roh} q_{vib} q_{elec}(q_{ns})$

Translation:

$$q_{+r} = \left(\frac{2\pi kT}{k^2}\right)^{\frac{3}{2}} \vee = \frac{\sqrt{3}}{\sqrt{3}}$$

Rotation:

At high T: (kT > 2Bhc)

where σ = symmetry number.

More generally for 3 moments of inertia (A,B,C):

$$q_{rot} = \frac{1}{\sigma} \left(\frac{kT}{hc}\right)^{3/2} \sqrt{\frac{TT}{ABC}}$$

Vibration:

$$\varepsilon_{v} = v \pi \sqrt{\frac{h}{2}} \quad (w + ZPE)$$

$$q_{vib} = \frac{1}{1 - e^{-\frac{h}{2}} w/kT}$$

$$AL T > \frac{h}{2} w/k, \quad q_{vib} \rightarrow \frac{h}{2} \pi w$$

Electronic:

2-Level Non-interacting System

e.g. lattice of immobile molecules with low-lying electronic energy levels. e.g. crystal of NO [Ground State ${}^{2}\Pi_{1/2}$ with low-lying ${}^{2}\Pi_{3/2}$] $Q_{N} = q^{N}$

Both are 2-fold degenerate,

$$q = 2 + 2e^{-\Delta z/kT}$$

$$g_{0} = g_{1}$$

$$U = NkT^{2} \frac{\partial (\Delta q}{\partial T}) = \frac{N \frac{\Delta z}{g_{0} + g_{1}} e^{-\Delta z/kT}}{g_{0} + g_{1} e^{-\Delta z/kT}}$$

$$S = Nk (N q + V/T)$$

$$KT^{2} \frac{\partial (\Delta q}{\partial T}) = \frac{N (\frac{\Delta q}{kT})^{2} g_{0} g_{1} e^{-\Delta z/kT}}{(g_{0} + g_{1} e^{-\Delta z/kT})^{2}}$$

$$(v = \frac{\Delta U}{\partial T})_{v} = \frac{N (\frac{\Delta q}{kT})^{2} g_{0} g_{1} e^{-\Delta z/kT}}{(g_{0} + g_{1} e^{-\Delta z/kT})^{2}}$$

$$(+hermal speckroscopy)$$

Heat Capacities of Gases

Heat Capacity as a Function of T:

Little maximum present in C_{rot} due to isolation of the bottom two levels at low temperature. High T \rightarrow Ground $\rightarrow 1^{st} \rightarrow 2^{nd}$... (also degeneracies).

$$C_{v} = \frac{\partial U}{\partial \tau} |_{v} = \frac{\partial}{\partial \tau} \left[kT^{2} \frac{\partial h Q}{\partial \tau} \right]_{v} \right]$$

$$Q_{N} = \frac{Q_{N}}{N!} \quad (use Stating's Approx):$$

$$hq = hq to thq qrot t...$$

$$C_{v} = C_{v}^{tr} + C_{v}^{rob} + C_{v}^{vib} + C_{v}^{elac}.$$

<u>**q**</u>_{tr}:

$$q_{tr} = \left(\frac{2\pi m^{1}kT}{k^{2}}\right)^{3/2} V$$

Constant V=>
$$\left(\sqrt{tr} = Nk\frac{\partial}{\partial T}T^{2}\frac{\partial lnT^{3/2}}{\partial T}$$

$$C_{s}^{tr} = \frac{3}{2}Nk = \frac{3}{2}R$$

q_{rot}:

Transition Regime \rightarrow kT ~< Bhc –

Need full q_{rot}:

$$\frac{2}{3T} \left[kT^{2} \frac{e^{-Bhc}T(J+1)/kT}{\frac{2}{3T} \left[kT^{2} \frac{e^{-Bhc}}{3T} \left[kT^{2} \frac{e^{-Bhc}}{3T} \left[\frac{Bhc}{kT} \left(J(J+1) \right) (J(J+1) e^{-Bhc}T(J+1)/kT} \right] \right]$$

Let T* = kT/Bhc

$$Let T = \frac{hT}{h} = \frac{hT}{hc}$$

$$\frac{\partial}{\partial T} = \frac{hT}{h} =$$

i.e. C_v^{rot} for different diatomic systems is identical if plotted versus T*, the reduced temperature.

Nuclear Spin Effects (identical nuclei)

Implies only odd J allowed, i.e. half the states are missing, consistent with:

$$q_{rot}^{homo} = q_{rot}^{hetero} / 2$$

H₂:

Can interpret the behaviour from the two-level system results:

Ortho: $g_1/g_0 = 1/3$, at k1 ~ 0.35 x 10Bhc, $C_v^{max} \sim 0.8R$. Equilibrium, $g_0 = 1$, $g_1 = 3 \times 3$, so $g_1/g_0 = 9$, kT ~ 0.25 x 2Bhc, $C_v^{max} = 2R$.

<u>**q**_{vib}:</u>

Since E-levels equally spaced, can't use 2-level system results. At high T, q^{vib} \rightarrow ^{kT}/_{hv}, i.e. C_v \rightarrow R x no. of normal modes.

$$C_{v} = \frac{\partial}{\partial T} N k T^{2} \frac{\partial \ln q}{\partial T}$$

= $N k \frac{\partial}{\partial T} \left[T^{2} (h Y_{kT2} e^{-h V nT}) \right]$
(I - e - h V nT)
(I - e - h V nT)
(I - e - h V nT)
(V = N k $\frac{\partial}{\partial T^{2}} f(T^{2})$ Universal
(V = N k $\frac{\partial}{\partial T^{2}} f(T^{2})$ Function
of T^{*}

Can thus measure vibration spectrum from the heat capacity. The form of the Universal Function is:

EXAMPLES:

Cv for
$$O_2 @ 1000k$$
 is $3 \cdot 197R$
-estimate vib frequency.
kT > Bhc :: Cyrot+Cytr= 2.5R
 $\Rightarrow C_yvib = 0.697R$.
From graph, T* = 0.48,
.:.0.48hv= 1000k
 $\Rightarrow v = \frac{1\cdot38 \times 10^{-23} \times 10^3}{6\cdot626 \times 10^{-34}}$
 $\approx 1550 \text{ cm}^{-1}$

Absolute Gas-Phase Entropies

Thermodynamics:

$$S_m^{\bullet}(T) - S_m^{\bullet}(0) = \int_0^{T} dT \frac{C_P}{T} + \sum_{\alpha} \Delta H_{\alpha} T_{\alpha}$$

Calorimetric Entropy.

Area under Graph of C_p vs. T.

Statistical Mechanics:

Difference in the calorimetric and spectroscopic entropies: $S_{resid} = S_{spec} - S_{cal}$. $S_{resid} \neq 0 \Rightarrow$ complications!

• Undetected low temperature phase transition.

.

- Use of wrong low-T degeneracy.
- Disorder in the crystal at low T, such that $S_o > 0$.

Gas:

$$\begin{aligned}
\Theta_{N} &= \Theta_{N!}^{N} ; \quad & \int_{N} \Theta_{N}^{N} = N \log_{-} \ln N ; \\
Use Stirling's Approximation: \\
& \int_{N} N! = N \ln N - N \\
& \vdots \int_{N} \Theta_{N} = N \ln (\Im_{N}) + N \\
& \vdots \int_{m}^{\infty} = R \ln (\Im_{N}) + R + RT \frac{\partial \ln \Phi_{-}}{\partial T} ,
\end{aligned}$$

→ trans, rot, vib, etc give additive contributions.

Monatomic Gas:

$$q_{+r} = \frac{V}{N_3}, N = \frac{1}{\sqrt{2\pi m t t}}$$

$$\therefore Sm^{\bullet} = R \ln \frac{V}{N_A \Lambda^3} + R + R \left(\frac{3}{2T}\right)$$

$$\delta^{\Gamma} Sm^{\bullet} = R \ln \frac{e^{\frac{2}{2} 2} V^{\bullet}}{N_A \Lambda^3} \begin{bmatrix} Sockeur - T = \frac{1}{2} \\ T = \frac{1}{$$

NOTE: Substances only distinguished by mass (at same T), and S_m° = constant + R ln m^{3/2}.

<u>Rotational Entropy</u> – Linear diatomic – kT > Bhc.

NOTE: The role of symmetry number (CO = 214 while N_2O = 220 despite similar m & I).

Vibrational Entropy -

If kT << hv, $q_{vib} \rightarrow 1$ and $S_{vib} = 0$. Generally,

$$S_{\text{vib}} = R \ln (1 - e^{-hv/kT}) + \frac{Rhv}{kT} (\frac{1 - e^{-hv/kT}}{1 - e^{-hv/kT}})$$

Electronic Entropy -

Only important for degenerate g-states, e.g. $O_2 - g_0 = 3$, or low-lying states, e.g. NO.

Verification of the 3rd Law –

Compare Calorimetric (assuming $S_m^{\circ}(0) = 0$) and spectroscopic entropies.

e.g.
$$H^{35}CI(15^{+})$$

 $B = 10.6cm^{-1}$
 $M = 36gmol^{-1}$
 $V = 2885cm^{-1}$
 $Q = 298K :$
 $A = 16.9 \times 10^{-12} \text{ M}$
 $V_{N_{x}} = 4.11 \times 10^{-26} \text{ m}^{-3}$
 $q_{rot} = 19.5.$
 $q_{vib} = 1.$

Statistical:

Thermodynamic:

But for N₂O:

Sin (stat) = 220
$$3 \text{ K}^{-1} \text{ mol}^{-1}$$

Sin (cal) = 215.2 $3 \text{ K}^{-1} \text{ mol}^{-1}$
=> Sin (0) = 4.8 $3 \text{ K}^{-1} \text{ mol}^{-1}$
If random orientations $\rightarrow R \ln 2$ (= 5.8 J K⁻¹ mol⁻¹)

Transition to fully ordered state occurs at such low temperature (due to very small ΔH from ordering) that kinetics so slow that transition is not seen.

Chemical Equilibrium

 $\mathbf{K}_{p} = \mathbf{e}^{-\Delta G/RT}$

i.e. the different of molar Gibbs Energies at T of interest where $p = p^{\circ}$.

Link to statistical mechanics:

$$\label{eq:G} \begin{array}{l} G = A + pV. \\ G_m = A + RT \mbox{ (non-interacting)}. \\ \textbf{G}_m = - \textbf{kT} \mbox{ In } (\textbf{q}^{N}/\textbf{N}!) + \textbf{RT} \end{array}$$

Using Stirling's Approximation:

$$-kT [N \ln q - N \ln N + N] + RT$$

$$G_{m}^{m} = -RT \ln \frac{q}{N_{N}} \quad \text{with zero of } E$$

$$G_{m}^{m} = -RT \ln \frac{q}{N_{N}} \quad \text{with zero of } E$$

$$G_{m}^{m} = -RT \ln \frac{q}{N_{N}} \quad \text{with zero of } E$$

$$G_{m}^{m} = \log(1 + 1) + \log(1 + 1) + \log(1 + 1)) + \log(1 + \log(1 + 1)) + \log(1 + \log(1 + 1)) + \log(1 +$$

Illustration - isotope exchange reaction -

$$H_2 + D_2 \Leftrightarrow 2HD$$

T = 1000K, v_{H2} = 4400cm⁻¹

,

Establish common energy zero by atomising reactants and products.

H₂ + D₂
$$\implies$$
 2HD (De same
2De-
2FGu,
-ZFGu,
-ZFGu,
2H + 2D (De-
 $jercos)$
 $\Rightarrow hc (v_{HD} - i_{2}hcv_{H_{2}}) - (De - i_{2}hcv_{D_{2}})$
 $= hc (v_{HD} - i_{2}v_{H_{2}} - i_{2}v_{D_{2}})$
 $\& v - \frac{1}{2\pi c} \int w$ all species $w \mu_{H_{2}} = i_{2}m_{H_{1}}$
 $\mu_{H_{2}} = m_{H_{2}}$
 $\Delta E_{o} = hcv_{H_{2}} (\sqrt{3}4 - i_{2} - i_{2}) \sqrt{v_{2}})$
 $= 54.5 cm^{-1} = 0.652 k S me^{-1}$

Ratio of Partition Functions -

 $q_{el} = 1$ for all.

$$\begin{bmatrix} (q_{1})_{n} \\ (q_{1})_{n}$$

Often high degree of cancellation when moles on left hand side of reaction equation equal the moles on the right hand side.

$$\frac{24r}{N_{A}} = \left(\frac{2\pi m kT}{h^{2}}\right)^{3/2} \frac{V}{N_{A}}$$

All factors cancel from this except masses.

$$\left[\begin{pmatrix} (m_{H} + m_{D})^{2} \\ (2m_{H} \times 2m_{D}) \end{pmatrix}^{3/2} \\ q_{rot} = \frac{8\pi^{2} I kT}{\sigma h^{2}}, I = N r^{2}$$
 some of the second sec

All cancel except μ and σ

$$\frac{\left(\frac{m_{H}m_{D}}{m_{H}+m_{D}}\right)^{2}}{\left(\frac{1}{2},\frac{m_{H}}{2},\frac{1}{2},\frac{m_{D}}{2}\right)}$$

$$q_{vib} = \frac{1}{1-e^{-h_{VC}/keT}} = 1$$

$$\left(as \frac{h_{VC}}{kT} > 1\right)$$

Total gives:

Illustration 2 – Thermal Ionisation

$$C_{3} \left({}^{2}S_{1/2} \right) = C_{3}^{+} + e^{-} T_{2} 2000 k$$

$$Q_{c}|=2 \qquad q_{e}|=2$$

$$T.P = 3 \cdot 89 eV = 275 \cdot 3k T mol^{-1}.$$

$$k_{p} = \left[{}^{(4}r_{1}k)c_{3} \left({}^{4}r_{1}k\right)e \right] \left[{}^{(9}r_{1}k)e \right] e^{-kF/RT}$$

$$\left[{}^{(9}r_{1}k)c_{3} \left({}^{4}r_{1}k\right)e \right] \left[{}^{(9}r_{1}k)e \right] e^{-kF/RT}$$

$$\left[{}^{(9}r_{1}k)c_{3} \left({}^{4}r_{1}k\right)e \right] \left[{}^{(9}r_{1}k)e \right] e^{-kF/RT}$$

$$\left[{}^{(9}r_{1}k)c_{3} \left({}^{4}r_{1}k\right)e \right] \left[{}^{(9}r_{1}k)e \right] e^{-kF/RT}$$

$$\left[{}^{(9}r_{1}k)e \right] \left[{}^{(9}r_{1}k)e \right] e^{-kF/RT}$$

$$\left[{}^{(9}r_{1}k)e \right] e^{-kF/RT} - 22 \cdot 57$$

$$\left[{}^{(9}r_{1}k)e \right] e^{-kF/RT} - 22 \cdot 57$$

$$\left[{}^{(9}r_{1}k)e \right] e^{-kF/RT} - 22 \cdot 57$$

$$\left[{}^{(1)}r_{1}e^{-kF/RT} - 20000 \\ NF^{0} = {}^{(2)}r_{1}e^{-kF/RT} - 22 \cdot 57 \\ NF^{0} = {}^{$$

Fraction of ionised Cs atoms at $p/p^{\circ} = 10^{-4}$.

Statistical Mechanics expression for K_c:

$$U_{A} + V_{B} \equiv V_{c} C$$

$$K_{c} = \left(\frac{N_{e_{V}}}{V_{v}}\right)^{V_{c}} = \left(\frac{N_{a}}{V_{v}}\right) K_{p} = \left(\frac{Q_{c}}{V_{v}}, \frac{1}{V_{v}}\right)^{V_{c}} - \Delta E_{e} / RT$$

$$\left(\frac{N_{a}}{V_{v}}\right)^{V_{a}} \left(\frac{N_{b}}{V_{v}}\right)^{V_{a}} \left(\frac{1}{V_{v}}\right)^{V_{b}} e^{-\Delta E_{e} / RT}$$

$$\left(\frac{Q_{v}}{V_{v}}, \frac{1}{V_{v}}\right)^{V_{a}} \left(\frac{1}{V_{v}}, \frac{1}{V_{v}}\right)^{V_{b}} e^{-\Delta E_{e} / RT}$$

(must approach from the right orientation).

Profile:

Quasi-Equilibrium Assumption:

K_c because equilibrium in concentration.

$$\frac{d[P]}{dt} = k_s [ABC]^{+} = k_s K_c^{+} [A][BC]$$
$$= k [A][BC]$$

 k_s = rate of passing through transition state = a velocity.

Alternatively, can think of vibrational motion along s.

Asymmetric stretching frequency v – assume transition state breaks up each time bond is stretched, i.e. $k_s = v$.

 K_c^{\dagger} includes vibrational and rotational partition functions of \ddagger , but factor q_{vib} for asymmetric stretch. Therefore,

Since v very low (weak bond) \rightarrow kT/hv. Therefore,

$$\therefore k = kT (9_{V})^{TS} e^{-\Delta E/RT}$$
overall $(\overline{9_{V}})(\overline{2}\underline{4}\underline{7})$
read

Check that Transition State Theory gives same rate constant as Simple Collision Theory when applied to collision of structureless spheres:

Transition State Rate Constant for: $H + H_2 \rightarrow H_2 + H @$

$$H + H_2 \rightarrow H_2 + H @ 1000K.$$

$$V_{u_{2}} = 4400 \text{ cm}^{-1}$$

$$V_{u_{1}}^{+} = 1943 \quad (3) \text{ str}$$

$$U_{2}^{+} = 950 \quad (2-\text{fold dagen bard})$$

$$T_{u_{2}}^{+} = 950 \quad (2-\text{fold dagen bard})$$

$$T_{u_{1}}^{+} = 0.944 \text{ R}$$

$$\text{Lineser T: State} = F_{2}^{+} |.07 \times 10^{-19} \text{ J}$$

$$2PE \text{ change:}$$

$$\frac{hc}{\zeta} \left([943 \times 2 \times 950 - 4400] \right)$$

$$= -0.05 \times 10^{-19} \text{ J}$$

$$\therefore \Delta E^{\pm} = 1.02 \times 10^{-19} \text{ J}$$

$$\frac{hcv_{1}^{\pm}}{\text{ kt}} >> 1 \qquad (\text{berd})$$

$$\frac{1}{\text{ kt}} \quad (9 \text{ str}^{-1/4}) \quad (9 \text{$$

Experimental of ~ 10^9 at these temperatures (accuracy in barrier height).

Interacting Systems

So far, have written $Q_N = q^N$.

But for e.g. atomic solid cannot write $E = \sum_{i,atoms} \varepsilon_i$

Implies must effect a transformation to new variables which do not interact. e.g. thermal properties of an insulating crystal. Crystal is harmonic, i.e. for small displacements E is proportional to $(\delta r_i)^2$. Transform from atomic to normal coordinates (normal modes) – phonons.

Each modes has a frequency v_i and is independent of degree of excitation of other modes,

$$E = \sum_{i,multi} n_i h_i$$

$$Q_{N} = \frac{3N-c}{T} \left[1 - e^{-h_i c/kt} \right]^{-2}$$

$$i = 1$$

Since N ~ N_A, spectrum is dense and continuous. Let P(v) be probability of finding mode frequency v [$\int_{0}^{\infty} dv P(v) = 1$ $\int_{0}^{\infty} dv P(v) = 1$ $\int_{0}^{\infty} dv P(v) = \int_{0}^{\infty} \int_{$

Internal Energy (wrt ZPE) -

$$U = kT + \frac{2\ln q}{2T} \Big|_{v} = kT^{2} 3N \int_{0}^{\infty} dv P(v) \frac{hv}{kT} e^{-hv/kT}$$
$$= 3Nh \int_{0}^{\infty} dv (Pv) \frac{v}{(e^{-hv/kT}-1)}$$

Heat Capacity -

$$C_{v} = \frac{\lambda U}{\lambda T} \Big|_{v} = 3Nh \int_{0}^{\infty} dv P(v) \frac{(-hv/kt)e^{hv/ktT}}{(e^{hv/kt}-1)^{2}}$$

= 3Nh $\int_{0}^{\infty} dv \left(\frac{hv}{kT}\right)^{e} \frac{e^{hv/kT}}{(e^{hv/kt}-1)^{2}} P(v)$
If T so, Cu - 3Nh [Dulong & Pettif's Law]

But C_v only 5.4J K⁻¹ for diamond at 298K (one of "failures of classical physics").

Einstein's Theory of Heat Capacity

Data appears to be Universal but functional form is not correct. Einstein \rightarrow exponential at low T.

DeBye Model

Improved the model of vibrational spectrum. Normal modes characterised by the wavelength λ .

$$S_i = \cos \frac{2\pi}{\lambda} x_i = \cos kx_i$$

- i) For small k (large λ) behaves like a continuum (v = c/ λ = ck/2 π).
- ii) Cut-off wavevector, $k = \pi/a$ ($\lambda = 2a$) zone boundary.
- iii) P(v)? Consider chain, length L

$$C_{V} \propto 3Nik \int_{0}^{\infty} \left(\frac{h_{V}}{kT}\right)^{2} \sqrt{\frac{e^{h_{V}/kT}}{\left(e^{h_{V}/kT}-1\right)^{2}}} \quad her \propto e^{h_{V}/kT}} \\ \therefore C_{V} \propto T^{3} \int_{0}^{\infty} dx \quad xc_{4} \frac{e^{x}}{(e^{x}-1)^{2}}$$

So for low T, $C_v \propto T^3$. [Integrand $\rightarrow 0$ for x << $x_{max} \rightarrow$ integral is T-dependent].

Heat Capacity of Metals

C_v for metals looks DeBye-like. What about free electrons? Free Electron Model – e-e interactions screen e-ion interaction. Electrons move independently in a smeared out 3D particle-in-a-box like-potential.

Energy Levels are filled according to the Aufbau Principle. At T = 0, highest occupied level is:

$$\begin{aligned} \mathcal{E}_{F} &= \frac{\lambda^{2}}{8m} \left(\frac{3N}{\pi v} \right)^{2/3} \\ \left(Form: Energy \right) \\ \mathcal{E} & \cup (T=0) = \frac{3}{5} N \mathcal{E}_{F} \end{aligned}$$

NB: Huge contribution to pressure balanced by electron-ion interaction. Only a few electrons near to ϵ_F can be excited thermally. Distribution described by Fermi-Dirac (not Boltzmann).

$$C_v = \frac{\pi^2}{2} Nk(\frac{kT}{EF})$$

Therefore negligible except for very low T (all other contributions \rightarrow 0).

Absorption of Gas in a Porous Material

Example of Phase Equilibrium. Consider N immobile atoms absorbed in M sites. With no 2 atoms in a single site – allows for interatomic repulsion. Number of configurations = M(M-1) ... (M-N-1). = M!/(M-N)! But it atoms indistinguishable = M!/(M-N)!N! Therefore neglect atom motion:

 $S_{conf} = k \ln [M!/(M-N)!N!]$

Each pore is of side d. Absorption energy ϵ_0 . Model motion of absorbed atom as translation in volume V = d³.

Partition Function = $d^3/\Lambda^3 = q$.

Provided box is big enough that quantum effects not important,

 $\Delta \varepsilon \sim h^2/8md^2$.

Therefore the Helmholtz Free Energy:

$$A_{M} = Ne_{0} - kT \ln q^{N} - T Seenf$$

= Ne_{0} - 3NkT ln $\frac{d}{\Lambda} - kT \ln \frac{M!}{N!(M-N)!}$

Absorbed atoms in equilibrium with gas at pressure p when $\mu_{abs} = \mu_{gas}$.

$$\mu = \frac{\partial A_{\rm N}}{\partial N} \Big|_{T,V}$$

$$\mu_{abe} = \epsilon_{0} - 3kT \ln \frac{d}{\Lambda} + kT \ln \frac{N}{M-N}$$

For N_a gas-phase molecules,

$$\begin{aligned} A & \sim z = -\kappa T \ln \left(\frac{V}{\Lambda^3} \right) + \kappa T \left[\frac{1}{1 - \kappa} - \frac{1}{1 - \kappa} \right] \\ & = \frac{1}{2} \ln \frac{1}{2} + \frac{1}{$$

Also, $pV = N_{o}kT$.

$$M_{3} = -kT \ln \left(\frac{kT}{\Lambda^{3}}\right) + kT \ln p$$

$$M_{3} = -kT \ln \left(\frac{kT}{\Lambda^{3}}\right) + kT \ln \frac{N}{M-N} = -kT \ln \frac{kT}{\Lambda^{3}p}$$

$$E_{0} - kT \ln \left(\frac{L}{\Lambda^{3}}\right) + kT \ln \frac{N}{M-N} = -kT \ln \frac{kT}{\Lambda^{3}p}$$

$$E_{0} - kT \ln \left[\left(\frac{L}{\Lambda}\right)^{3} \left(\frac{1-\Theta}{\Theta}\right)\right] = -kT \ln \left(\frac{kT}{\Lambda^{3}p}\right)$$
i.e.
$$\ln \left[\frac{kT}{\Lambda^{3}}\right] = -kT \ln \left(\frac{kT}{\Lambda^{3}p}\right)$$
i.e.
$$\ln \left[\frac{kT}{\Lambda^{3}}\right] = -E_{0}/kT$$

$$\frac{G_{0}}{1-\Theta} = p \frac{dSe - E_{0}/kT}{kT}$$

$$\implies O = \frac{bp}{1+bp} \qquad Lehamula isotherm.$$

Provides a microscopic interpretation for the empirical parameter b.

Classical Interacting Systems (fluid)

For most liquids, can treat system classically, e.g. for Ar at 84K (triple point):

i.e. thermal de Broglie wavelength << interatomic separation, therefore classical.

How do we get a classical partition function? Expressed in terms of particle positions and momenta. A point in "phase-space" is specified by all molecular positions and momenta.

R, P = [
$$r_1, r_2, ..., r_N$$
; $p_1, p_2 ..., p_N$]

Expect,

Energy at R, P = H(R,P) and probability of being at R, P:

What is constant -

i)	Need 1/N!	(indistinguishability)
ii)	$\Delta x_i \Delta p_i \ge h$	(HU ^c P)

i.e. each point in phase-space only distinguishable from another if drdp > h. Therefore overall need $1/h^{3N}$ factor.

Check, do we get same value as classical limit of quantum partition function. e.g. ideal gas (quantum):

$$Q_{N} = \left[\left(\frac{2\pi m k t}{h^{2}} \right)^{3/2} \sqrt{J}^{N} \right]^{N}$$

Classically $V \rightarrow 0$:

$$= \frac{1}{h^{3} n_{N!}} \int dp_{n} e^{-p_{1}^{2} / 2mkT} \int dr_{n} e^{0}$$

$$= \frac{V^{N}}{h^{3} N_{N!}} \int dp_{n} e^{-p_{1}^{2} / 2mkT} \int dp_{2} e^{-p_{2}^{2} / 2mkT} \int dp_{3} \dots \int dp_{N}$$

$$= \frac{V^{N}}{h^{3} N_{N!}} \left[\int dp_{1} e^{-p_{1}^{2} / 2mkT} \right]^{N}$$

Integral is:

$$\int dp_{x} e^{-px^{2}/2mkt} \int dp_{y} e^{-p_{y}^{4}/2mkt} \int dp_{z} e^{-px^{2}/2mkt} \int dp_{z} e^{-px^{2}/2mkt} \int \int \frac{1}{2mkt} \int \frac{1}{2mkt$$

Generally,

$$Q_{\mu} = \left(\frac{V_{\Lambda^3}}{N} \right)_{\lambda \downarrow}^{\mu} Z_{\mu}$$
$$Z_{\mu} = V^{-\mu} \int dr_{\mu} e^{-V/\mu T}$$

Application: Low Density Interacting Gas (Virial)

Suppose atoms of a gas interact via a pair potential:

$$V(r_{1}...r_{N}) = \sum_{i} u(r_{i}) = \sum_{i} u_{i}$$

$$e^{-V/kT} = \prod_{ij} e^{-u_{ij}/kT} \left[Leh f_{ij} = e^{-U_{ij}'/kT} - 1 \right]$$

$$\therefore e^{-V/kT} = \prod_{ij} (1 + f_{ij})$$

$$\iint dr_{i}...dr_{N} e^{-V/kT} = \sqrt{n} (1 + \frac{N^{2}}{V}B + \frac{N^{2}}{V^{2}}C...)$$
where $B = 2\pi \int dr r^{2} (e^{-U/kT} - 1)$

Consider,

$$A = -kt \ln \Theta_{N} = -kt \ln \Theta_{N} - kt \ln Z_{N}.$$

$$\ln Z_{N} = \ln \left(1 + \frac{N^{2}}{V}B + \frac{N^{3}}{V^{3}}C...\right)$$

$$low densities: \ln Z_{N} = \ln \left(1 + \frac{N^{2}}{V}B\right)$$

$$E^{N,B}: \ln \left(1 + x\right) = x + \frac{x^{2}}{V} + ...\right]$$

$$\left[\ln Z_{N} = \frac{N^{2}}{V}B + other terms$$

$$P^{resource}P = -\frac{2N}{V}O_{V}\right)_{T,N}$$

$$= \frac{N^{k}t}{V} - kt \frac{N^{2}}{V^{2}}B + \Theta(P^{2})$$

$$i.e. Virial Expansion, B is the Virial Coefficient.$$